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1. Introduction 

Modern scientific projects are increasingly collaborative, data-intensive, and 
computationally distributed. A single study may span laboratories, instruments, software 
environments, and analytical frameworks across continents. Yet, despite this 
interconnected nature of contemporary science, there remains no universal, machine-
readable narration language to describe how scientific work actually happens — how 
people, computation, and instruments cooperate to produce reproducible knowledge. 

SNOWFLAKE — Scientific Narrative Of WorkFLow for Learning, Analytics and 
Knowledge Engineering— is proposed as that language. SNOWFLAKE is a structured 
descriptive and executable language for representing, analyzing, sharing, and even 
operationalize the complex lifecycle of a scientific project — encompassing human, 
computational, machine, and data components. SNOWFLAKE provides a structured, 
declarative way to document and encode every element of a scientific workflow: 

 Human Work Elements (researchers, analysts, field scientists) 
 Computational Work Elements (software, models, algorithms) 
 Machine Work Elements (instruments, sensors, hardware) 
 Information Product Elements (data, models, results, and scientific thoughts) 
 Linker Elements (that coherently connect them for many purposes). 

 
Each workflow along with its elements described in SNOWFLAKE becomes a scientific 
object — uniquely identifiable, interoperable, and semantically interpretable. The language 
defines not only the structure of a workflow but also the conditions, resources, roles, and 
cdependencies that give it operational meaning. SNOWFLAKE therefore acts as both a 
language and a framework — bridging human understanding with computational 
execution. Just as a snowflake crystallizes unique yet symmetrical structure, each 
SNOWFLAKE document captures a scientific process in all its individuality while 
preserving universal form. In short, SNOWFLAKE transforms scientific workflows from 
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informal narratives into structured, computable knowledge — enabling science to 
describe itself. 

2. Related Work 

Scientific workflow description languages (SWDL) have evolved over the past 
decade to enhance computational reproducibility, data provenance, and cross-
platform interoperability in research automation.  Indeed, in last decade, there has 
been amazing progress in attempt to capture science workflow. These include 
Common Workflow Language (CWL) (Amstutz et al., 2016), Workflow 
Description Language (WDL) (Voss et al., 2017), Nextflow (Di Tommaso et al., 
2017), Pegasus (Deelman et al., 2015), Galaxy (Afgan et al., 2018), RO-Crate 
(Soiland-Reyes et al., 2022), and the recently proposed SWIRL interoperability 
framework (Goble et al., 2024). 

Each system was developed for a specific scientific purpose and has since evolved 
within distinct ecosystem contexts. CWL was designed as a platform-neutral 
standard for workflow description and has become central to FAIR-data 
infrastructures such as ELIXIR, WorkflowHub, and EOSC-Life (Goble et al., 2020; 
Sufi et al., 2023). WDL, developed by the Broad Institute, underpins biomedical 
analysis platforms like Terra, BioData Catalyst, and Gen3 Commons, where 
standardized genomics workflows are executed at national scale (Broad Institute, 
2024). Nextflow has become one of the most widely adopted frameworks for 
reproducible, containerized, and scalable data-intensive workflows, driven by the 
nf-core community and integrations with AWS Batch, Google Cloud Life Sciences, 
and Nextflow Tower (Di Tommaso et al., 2017; Ewels et al., 2020). Pegasus serves 
as a mature engine for high-performance and distributed computing, supporting 
production deployments at LIGO, NSF XSEDE, and DOE facilities, emphasizing 
workflow mapping, provenance, and fault-tolerant execution (Deelman et al., 2015; 
Vahi et al., 2020). Galaxy provides a graphical, user-friendly environment for 
accessible and reproducible data analysis, widely deployed through public portals 
such as UseGalaxy.org, UseGalaxy.eu, and NIH Galaxy, where it supports large 
communities of life scientists and educators (Afgan et al., 2018; Jalili et al., 2020). 
RO-Crate complements these systems by providing a metadata-packaging 
standard that encapsulates digital research artifacts for FAIR compliance and 
interoperability across repositories like Zenodo, DataCite, and ARDC (Soiland-
Reyes et al., 2022). Finally, SWIRL represents an emerging interoperability-
oriented representation language designed to unify workflow ecosystems through 
a shared intermediate scientific abstraction (Goble et al., 2024).  

These languages excel in computational automation, orchestration, reproducibility 
however, these exhibit limited semantic expressiveness and epistemic transparency. 
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Declarative standards such as CWL and WDL are now cornerstones of reproducible 
research but remain primarily machine- and data-focused, offering few constructs 
for representing human or institutional roles. Nextflow and Pegasus deliver high 
execution fidelity across distributed environments but provide minimal scaffolding 
for ethical or Open Science narratives. Galaxy democratizes access through 
graphical interfaces but sacrifices formal extensibility. Metadata-focused models 
like RO-Crate and SWIRL enhance interoperability but stop short of capturing 
human, ethical, or interdisciplinary contexts. 

AS evident, most existing SWDL frameworks remain centered on machine-
executable and data-centric representations, leaving gaps in modeling the science 
itself- the story of human participation, scientific rationale, ethical context, and 
interdisciplinary innovation narratives. —dimensions that the proposed 
SNOWFLAKE framework seeks to unify within a single, semantically rich schema. 

In contrast to these SWDL frameworks- as we will see SNOWFLAKE extends 
beyond machine/computation/digital focused execution description to integrate 
computational, human, and semantic dimensions of scientific workflows—
enabling richer representation of intent, responsibility, collaboration, and 
reproducibility across the full lifecycle of research. 

3. Design of SNOWFLAKE 

The SNOWFLAKE schema (Scientific Narrative Of WorkFLow for Learning, 
Analytics and Knowledge Engineering) is designed as a meta-representation 
framework for describing every dimension of a research project — not just its 
computations, but also the human, institutional, informational, and ethical 
contexts that make science understandable, communicable, reproducible and 
interpretable. A scientific workflow is not just a series of computing- it must be 
understood in the context of scientific knowledge it adds to, and the larger 
collaborative human knowledge processes involved. 

3.1. Formal Definition and Distinction of the SNOWFLAKE 

Classically, a workflow has been defined as a “formal specification of a process 
that determines the ordered sequence of computational or data manipulation tasks, 
their dependencies, and the flow of control and information among them” (Taylor 
et al., 2007; van der Aalst et al., 2003; Deelman et al., 2005). Such definitions 
emphasize process automation, task coordination, and computational 
reproducibility, serving primarily the needs of machine-oriented scientific 
workflows such as those implemented in CWL, WDL, Pegasus, or Galaxy (Gil et 
al., 2007; Curcin and Ghanem, 2008). Within this paradigm, workflows are treated 
as execution graphs—efficient but semantically shallow structures that capture 
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how computation occurs while completely omitting human factors, intentions and 
important information such as why, by whom, and under what scientific or ethical 
rationale it is performed. 

In contrast, the SNOWFLAKE Workflow—formally defined as a structured and 
semantically unified schema that integrates human, computational, machine, and 
informational processes into a single representation of scientific intent, execution, 
and accountability—extends the classical concept beyond automation. It 
reconceptualizes workflows not merely as process control models but as 
knowledge representation frameworks that capture the epistemic, organizational, 
and ethical context of scientific research project.  

3.2. Architecture of SNOWFLAKE 

Each SNOWFLAKE workflow is instantiated as a graph of interlinked object 
classes—WorkFlow (W), HumanWorkElement (H), ComputationalWorkElement 
(C), MachineWorkElement (M), InformationProductElement (I), and Link (L)—
providing a multi-actor ontology that models the full lifecycle of a scientific 
process. Unlike traditional workflow description languages that focus on execution 
provenance and data lineage, SNOWFLAKE introduces attributes for research 
hypothesis, theoretical framework, innovation, FAIR indices, and ethical-
environmental review, thereby achieving both computational reproducibility and 
scientific interpretability. 

In formal terms, while the classical workflow may be represented as a directed 
acyclic graph 𝐺 = (𝑇, 𝐸), where 𝑇 denotes tasks and 𝐸 the control or data 
dependencies, the SNOWFLAKE workflow extends this to a heterogeneous, typed 
graph 

𝐺ௌேைௐ = (𝑉, 𝐸, Σ௏, Σா) 
 

where Σ௏ = {𝑊, 𝐻, 𝐶, 𝑀, 𝐼} defines vertex classes (human, computational, 
machine, informational) and Σா = {𝐿} defines link semantics capturing execution, 
data-flow, accountability, and ethical relations. This model allows not only 
automation and reproducibility but also traceable understanding— enabling cross-
domain reuse, meta-analysis, and Open Science compliance at the institutional 
level. 

In SNOWFLAKE, a Workflow serves as the top-level narrative container that 
encapsulates: 

 The scientific purpose (research question, hypothesis, and theoretical 
framework), 
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 The sequence and interrelation of human, computational, and machine 
tasks, 

 The information products created, consumed, or transformed, and 

 The ethical, environmental, and institutional contexts surrounding the 
research. 

A Workflow thus provides both procedural structure (the order and dependency 
of actions) and epistemic context (the intent, innovation, and accountability) — 
bridging the gap between automation schema and scientific narrative. 

4. Elements of SNOWFLAKE 

4.1. WorkFlow (W) — Project-Level Schema 

The WorkFlow (W) element represents the root scientific process—a complete 
research activity or experiment, encompassing its intent, methodology, execution, 
and evaluation. It functions as the meta-node that unifies all other process 
components (human, computational, machine, informational, and linking). 
Each workflow instance encapsulates descriptive attributes such as its scientific 
abstract, research question, theoretical framework, innovation vector, ethical and 
environmental reviews, data stewardship, and FAIR/reproducibility indices. 
Formally, 𝑊 = ⟨𝐼𝐷, 𝐷, 𝐻, 𝐶, 𝑀, 𝐼, 𝐿⟩, where these components define the composite 
structure of a self-describing, semantically linked scientific workflow. 

4.2. HumanWorkElement (H) — Human Task or Cognitive Role 

The HumanWorkElement (H) models human participation and accountability 
within a workflow. It captures the intellectual, manual, or supervisory actions 
performed by individuals or teams—such as designing protocols, verifying outputs, 
annotating data, or approving results. Unlike traditional workflows that abstract 
human input as opaque or external, SNOWFLAKE explicitly encodes each actor’s 
role, competency level, accountability entity, task time, tools, environment, and 
verification method. Formally: 

𝐻௜ = ⟨𝑅𝑜𝑙𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑇𝑖𝑚𝑒, 𝐶𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑦, 𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛⟩ 

Where every human instance contributes both process and epistemic traceability to 
the workflow. 

4.3. ComputationalWorkElement (C) — Algorithmic or Software Process 

The ComputationalWorkElement (C) represents any algorithmic, code-based, or 
software-driven operation—from data preprocessing to machine learning training 
or simulation. It defines the computational function, parameters, algorithms, 
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resource usage, and reproducibility metadata (e.g., container versions, runtime 
environment, code availability). Attributes such as AlgorithmicDescription, 
ComputeResource, ExecutionTime, SoftwareMaturity, and VerificationMethod 
ensure both performance accountability and code-level reproducibility. 
Formally: 

𝐶௝ = ⟨𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐹𝐴𝐼𝑅஼⟩ 

Extends classical machine-task nodes into self-describing, FAIR-aware 
computational entities. 

4.4. MachineWorkElement (M) — Physical or Instrumental Operation 

The MachineWorkElement (M) describes hardware-dependent or physical system 
operations—for instance, a GPU cluster performing inference, a lab instrument 
capturing spectra, or an IoT node collecting sensor data. Each instance models the 
instrument type, capacity, location, operating environment, calibration, 
consumables, responsible entity, and machine-level FAIR index (M-FAIR). 
Formally: 

𝑀௞ = ⟨𝐷𝑒𝑣𝑖𝑐𝑒, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛, 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐹𝐴𝐼𝑅ெ⟩, 

It ensures that physical instrumentation is not only operationally, but also 
semantically integrated into the reproducibility framework. 

4.5. InformationProductElement (I) — Data or Knowledge Artifact 

The InformationProductElement (I) captures the data entities, models, or 
knowledge artifacts produced, consumed, or transformed during workflow 
execution. Each instance may represent raw datasets, derived models, simulation 
outputs, documents, or analytical results. Attributes such as SchematicDescription, 
FileSize, CurationExpertise, ValidationMethod, and I-FAIR Index ensure that data 
are findable, accessible, interoperable, and reusable. Formally, 

𝐼௟ = ⟨𝐶𝑜𝑛𝑡𝑒𝑛𝑡, 𝑆𝑐ℎ𝑒𝑚𝑎, 𝑆𝑖𝑧𝑒, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝐶𝑢𝑠𝑡𝑜𝑑𝑖𝑎𝑛, 𝐹𝐴𝐼𝑅ூ⟩, 

It make every data element a traceable and reusable unit of scientific evidence. 

4.6.  Link (L) — Relational and Causal Connector 

The Link (L) element formalizes the relationships and dependencies among all 
other object classes in SNOWFLAKE. Links define not just execution order (as in 
classical DAGs) but also semantic, ethical, and accountability relations between 
workflow components—such as “produces,” “verifies,” “executes-on,” “resides-
on,” or “supervises.” Each link is typed and labeled (𝐿𝑖𝑛𝑘𝑇𝑦𝑝𝑒, 𝐿𝑖𝑛𝑘𝐿𝑎𝑏𝑒𝑙) and 
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connects two instances (𝑠𝑟𝑐, 𝑠𝑖𝑛𝑘), maintaining metadata on cardinality, 
validation, and ownership. Formally, 

𝐿௠ = ⟨𝑠𝑟𝑐, 𝑠𝑖𝑛𝑘, 𝑡𝑦𝑝𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛⟩, 

It provides a relational fabric that enables multi-level reasoning, provenance 
tracing, and process validation. 

4.7. Attributes and Semantics Perimeter 

We have designed an extensive +150 attribute schema which works as a semantic 
container defining these five elements of SNOWFLAKE. The document presents 
the structural design and semantic container – as defined by the attribute 
specifications of the SNOWFLAKE schema, defining each entity and its 
associated descriptors in a machine-interpretable format. Reader can examine 
the list of attributed, their semantics, and the encoding methodology in the 
associated Technical Report (Khan, & Thomas & Prithula, 2025 [18]). Each 
attribute is assigned a unique identifier, structure, and value constraint to ensure 
consistency, interoperability, and semantic traceability across diverse research 
environments. It serves as a technical reference for encoders, system designers, 
and developers implementing SNOWFLAKE-compliant registries, workflow 
capture systems, or data-integration pipelines. 

5. Features of SNOWFLAKE 

5.1. Traditional Workflow Construction 

A flowchart in the SNOWFLAKE system can be dynamically generated using the 
entity and link attributes already defined in Tables 3–8. Each node in the chart 
corresponds to an entity—Human Work Element (HWE), Computational Work 
Element (CWE), Machine Work Element (MWE), or Information Product 
Element (IPE)—identified by its InstanceID, Title, and SNOWTypology. The 
flow relationships between these nodes are drawn from the Link Elements 
(SRCInstanceID, SinkInstanceID, LinkType, and optional LinkLabel), which serve 
as directed edges describing execution, data, or dependency paths. Logical 
branching, decisions, and synchronization points are governed by the 
EpistemicCondition fields on each node (104.3, 105.3, 108.3, 106.4) and by 
LinkEpistemicCondition (107.3) on edges; these conditions act as guards that 
enable or block transitions—precisely the role of decision diamonds in classical 
flowcharts. Additional contextual cues such as ActorRole, ResponsibleEntity, or 
FunctionalRole can be used to group nodes into swimlanes, while 
NestedCardinality and WorkFlowId organize sub-processes and parent flows. 
When rendered graphically, this metadata collectively expresses process order, 
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information flow, and epistemic validation states, allowing SNOWFLAKE to 
reproduce—and extend—the semantics of a traditional flowchart within a unified 
scientific workflow graph. 

5.2.  Control Flow Representation 

SNOWFLAKE can represent control flow, and in fact it can do so in a more 
expressive and epistemically rich way than traditional programming control-flow 
diagrams.  

Control flow describes how execution proceeds — what runs next, under what 
condition, and how loops or branches are handled. SNOWFLAKE already encodes 
these semantics through its Processing Elements (HWE, CWE, MWE) and Link 
Elements (LNK) with Epistemic Conditions. 

In this sense: 
 Nodes (processes) = execution blocks 
 Links (connections) = control edges 
 EpistemicCondition / LinkEpistemicCondition = guard or branch 

condition 
 Cardinality & Persistence = loop, iteration, or concurrency semantics 

 
Thus, a control-flow graph (CFG) is naturally embedded inside a 
SNOWFLAKE workflow as its control subgraph. 
 

 
 

Control Flow Concept SNOWFLAKE Representation Example

Sequential execution
LinkType="Execute-After" between two 
Processing Elements.

Task B runs after Task A 
completes.

Conditional branch (if/else)
Multiple outgoing links from a node, each 
with a different LinkEpistemicCondition.

“If sensor_temp > 50, activate 
cooler; else log warning.”

Loop / iteration
A link from a downstream node back to an 
upstream node with LinkType="Loop-Back" and 
a condition.

“Repeat until error_rate < 0.05.”

Parallelism / fork-join
One-to-many or many-to-one links using 
Cardinality or LinkType="Fork"/"Join".

“Run preprocessing on 5 data 
partitions concurrently.”

Synchronization
A Join node whose inbound links must all be 
valid before execution (EpistemicCondition = 
all preconditions true).

“Start training only when all 
sensors calibrated.”

Function / subroutine call
A nested WorkFlow (103.3 NestedCardinality) 
with its own internal flow.

“Invoke SubWorkflow: 
ModelEvaluation.”

Exception / interrupt
A special link with LinkType="Interrupts" or 
conditional guard.

“Abort if calibration file 
missing.”

Table-8 How SNOWFLAKE Encodes Control Flow
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Traditional control flow only expresses temporal or logical sequencing. 
SNOWFLAKE introduces epistemic control flow — control based on knowledge 
state. That means a process can be enabled not just when a flag or variable is true, 
but when an information product (IPE) has been validated, verified, or peer-
reviewed. Such as “Run the publication workflow only after dataset IPE is validated 
and peer-review approval is true.” This goes beyond classical CFGs — it merges 
knowledge readiness with execution logic, which is essential for scientific or data-
driven workflows. 

5.3. Virtual Computing Orchestration  

SNOWFLAKE can also be used to represent the mapping of computational 
processes onto virtual or physical machine hardware by aligning each 
Computational Work Element’s (ComputeResource, ID 105.10) specification with 
the Machine Work Element’s (CapacityDescription, ID 108.9) descriptor through 
the Executes-on link. The ComputeResource field of a CWE defines the typical 
node or hardware configuration required for execution —for example “3× Xeon 
28c + P100” —expressing the processor count, core size, and accelerator type the 
computation expects. Conversely, each MWE declares its CapacityDescription, 
such as “20× Xeon 28c + 160× P100,” summarizing the actual compute resources 
available on that machine or virtual instance. During orchestration, the Executes-
on links in mappable state are resolved by matching ComputeResource 
requirements against CapacityDescription availability, transitioning through 
requested → pending → granted → locked as scheduling proceeds. This pairing 
enables SNOWFLAKE to reason quantitatively about placement, verify resource 
sufficiency, and translate logical workflows into concrete, capacity-aware 
deployments across heterogeneous clusters or virtualized infrastructures. 

5.4. Epistemic Conditions for IPE  

A powerful and novel feature of the SNOWFLAKE framework is that 
conditions are not restricted to process transitions alone but can be attached to 
Processing Elements, Information Product Elements (IPEs), and even the Link 
Objects that interconnect them. This represents a significant generalization of the 
classical Petri net paradigm—where conditions apply primarily to transitions—
into a richer, multi-dimensional epistemic network. In SNOWFLAKE, every 
entity and relationship can embody its own activation, validation, or dependency 
condition, enabling the system to model not just when processes occur, but when 
information becomes epistemically justified and when relationships themselves 
become valid. This triadic conditioning mechanism allows SNOWFLAKE to unify 
workflow logic, information provenance, and knowledge-state evolution within 
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a single, semantically consistent framework—marking a conceptual advance in 
representing the dynamics of scientific knowledge creation. 

 

5.5. Representation of Human Work and Role 

In classical workflow languages such as CWL or WDL, human actions are invisible 
to the computational graph; data simply appears as input. RO-Crate and SWIRL 
add descriptive power—they can record that Dr. Lee operated the microscope or a 
participant contributed blood samples—but these remain annotations detached 
from execution. SNOWFLAKE, however, integrates people as active epistemic 
agents: the experimenter’s calibration, the analyst’s judgment, and the subject’s 
consent are all encoded as workflow attributes and conditions. 
A SNOWFLAKE workflow may pause until an authorized scientist verifies an 
image, or refuse to proceed without documented consent. 
This elevates the workflow from a passive automation script to a living 
representation of scientific practice, where humans, machines, and ethics co-
operate inside a single computational grammar. 

This incorporation of human role in scientific narration is invaluable. From a 
technical standpoint, SNOWFLAKE’s treatment of human entities introduces a 
representational and operational advance over all prior workflow architectures. 
This provides causal completeness — every procedural dependency, including 
manual calibration or verification, becomes a first-class element of execution. This 
design produces a more realistic computational model of science, since 
experimental outcomes are often contingent on human intervention, interpretation, 
or ethical compliance. The integration of AccountabilityEntity and 
CompetencyLevel attributes enforces verifiable authorship and authorization, 
turning provenance into a machine-checkable form of accountability. Similarly, 

SNOWFLAKE 
Element

Petri Net 
Analogue

Condition 
Type

Interpretation in SNOWFLAKE
Example of Application / 

Trigger

Processing 
Element (PE)

Transition
Operational 

Condition

Defines when a process  (human, machine, 
or computational) is permitted to execute. 

Conditions may include availability of input 
data, tool readiness, user authorization, or 

time constraints.

"Script (PE) A executes only if 
raw dataset exists, schema 

matches, and validation flag = 
true."

Information 
Product 

Element (IPE)

Token / 
Place Content

Epistemic 
Condition

Defines when an information artifact  can 
be instantiated, updated, or considered 

epistemically valid. Reflects logical 
sufficiency, evidential support, or peer 

validation.

"Derived Genome dataset (IPE) 
G is “valid” only when 
calibration model and 

metadata records are verified."

Link Object 
(LNK)

Arc or Flow 
Connection

Relational 
Condition

Defines when a relationship  (e.g., 
input–output linkage, dependency, or 

citation) can be asserted as valid. Ensures 
semantic and temporal coherence between 

connected elements.

"A 'usesDataFrom'  link 
activates only after both source 

and target IPEs are validated 
and temporal overlap is 

confirmed."

Table-8  Interpretation  of Epistemic Conditions in SNOWFLAKE
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HumanFAIRIndex and EthicalComplianceCheck extend reproducibility metrics 
beyond automation to include cognitive and regulatory traceability, ensuring that 
both data and decisions are reproducible. As a result, the SNOWFLAKE engine 
can evaluate human-dependent workflow branches conditionally—pausing, 
verifying, or rejecting execution based on real-time confirmations. In effect, 
SNOWFLAKE fuses human cognition, instrumental control, and algorithmic 
execution into a unified formal system, enabling reproducibility-aware, ethics-
aware, and human-aware computation 

5.6. Representation of Scientific Instruments 

SNOWFLAKE  treats a workflow not just as a computational process, but as a 
scientific knowledge instrument — one that unifies procedural logic, epistemic 
intent, and provenance under a single descriptive model.  

Unlike CWL, WDL, Nextflow, or Pegasus, which focus on computational 
execution, and unlike RO-Crate or SWIRL, which focus on metadata 
interoperability, SNOWFLAKE introduces an ontological layer where every 
workflow element (task, tool, actor, instrument, environment) carries semantic 
attributes such as ScientificSignificance, FunctionalRole, Persistence, and 
HumanFAIRIndex. This allows a SNOWFLAKE workflow to explicitly recognize 
both digital and physical instruments—for example, identifying an electron 
microscope as a calibrated data-producing entity, or a computational model as an 
analytic instrument.  Among current workflow and provenance frameworks, 
most—such as CWL, WDL, Nextflow, Pegasus, and Galaxy—are designed to 
describe computational processes, not physical instruments. They can execute 
data-analysis steps that use data from an electron microscope or a refrigerator, but 
they cannot natively recognize or describe those instruments themselves. Only RO-
Crate and the newer SWIRL interoperability framework allow instruments to be 
represented as research objects with metadata, identifiers, and provenance. Thus, 
only these two can formally describe classical scientific instruments within a 
workflow ecosystem, linking digital computation to the physical apparatus that 
generated the data.  SNOWFLAKE surpasses existing workflow metadata 
frameworks by embedding scientific instruments into the semantic, procedural, 
and epistemic fabric of workflows. While RO-Crate and SWIRL can record 
instruments as metadata entities for provenance and interoperability, 
SNOWFLAKE can instantiate them as active, parameterized participants in the 
scientific process—each with role, calibration, accountability, and knowledge 
purpose. This transforms a workflow from a record of actions into a living 
scientific apparatus—a meta-instrument capable of representing, executing, and 
reasoning about real instruments and their contribution to discovery. In essence, 
SNOWFLAKE turns the workflow itself into a meta-instrument of science, 
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capable of describing, executing, and validating knowledge production as a 
reproducible and FAIR-aligned process. 

5.7. KIP Classification of Innovation and Knowledge Engineering 

A KIP (Knowledge Information Product) is an intangible yet identifiable 
scientific information artifact representing a conceptual or cognitive construct 
generated, refined, or validated through inquiry. It includes ideas, hypotheses, 
models, frameworks, and theories — all carrying epistemic value, provenance, and 
versioning, just like datasets or workflows. 

Each KIP has a persistent identifier, a Tier-1 Origin, a Representation Form, 
and a Functional Role within the scientific knowledge cycle. 

An innovative feature of SNOWFLAKE is the introduction of a formal language 
for representing and tabulating the information artifacts employed in scientific 
exploration through a structured KIP (Knowledge Information Product) 
typology. To the best of our knowledge, knowledge artifacts—including ideas, 
insights, hypotheses, postulates, and models—have not previously been subjected 
to systematic classification. 
Through its KIP (Knowledge Information Product) typology, SNOWFLAKE 
makes it possible to catalogue and analyze ideas, insights, hypotheses, and 
models—the cognitive tools that have long driven exploration but have rarely been 
formally represented. The KIP framework recognizes these constructs as 
authentic, reproducible, and citable information entities, deserving the same 
care, traceability, and FAIR stewardship as data and software. 
By linking conceptual artifacts to every stage of the scientific workflow, 
SNOWFLAKE opens a pathway toward a new discipline of scientific knowledge 
engineering, where the evolution of thought itself becomes transparent, analyzable, 
and shareable. 
 
Each of these can be recorded as an Information Product Elements (IPE) along with 
more traditional items cataloged in earlier efforts. These IPE Instances can be 
linked as input/output/derivative to various C/M/H/I workflow element instances. 
Below is a SNOWFLAKE three tire IPE typology scheme. For example, a scientist 
can provide a plausible interpretation of a trend about reviewing a graph. The 
interpretation product can be catalogued as “SNOW.I: M.E.M.KIP-06”. Thus, 
SNOWFLAKE can be the facilitator for genesis, search, recognition of innovation 
products. IT can be foundational towards deeper scientific security.   
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Table- 101(a) The Three Tire SNOWFLAKE Typology for Information  Product

Tire Tier Conceptual Function Examples

T1 Tier 1: Origin
Human cognitive and inferential 
generation of new knowledge elements.

Ideas, hypotheses, theories.

T2
Tier 2: 
Representation

Symbolic or textual expressions of 
conceptual knowledge (statements, 
equations, diagrams).

Hypothesis text, model equations, conceptual graphs.

T3
Tier 3: Functional 
Role

Frameworks guiding or interpreting 
empirical data.

Hypothesis guiding experiment, theory interpreting 
data.

Table-101(d) Tier 3 –Classification of  Functional Role (Purpose in the Knowledge Process)
Describes why  the information exists and how  it functions in inquiry.

Code Role Definition / Scope Illustrative Examples

P
Primary (Raw 

Evidence)

Direct empirical or computational 
records representing original 
observations of phenomena.

Sensor readings, field logs, simulation outputs.

S
Secondary 

(Processed Product)

Analytical, derived, or interpreted 
outputs created by transforming or 

analyzing primary sources.
Derived datasets, statistical summaries, fitted models.

R
Reference 

(Validation / 
Calibration)

Standardized or benchmark 
information used to compare, verify, or 

calibrate other data.

Control datasets, reference spectra, gold-standard 
curves.

C
Contextual 
(Metadata / 

Documentation)

Descriptive or procedural information 
that provides context, intent, 

provenance, or methodological detail.

Experimental design, workflow description, 
provenance records.

M
Mental (Cognitive / 

Theoretical 
Insight)*

Intangible intellectual artifacts that 
originate from human reasoning, 
abstraction, or theorization and 

structure the understanding of data.

Ideas, hypotheses, conceptual models, theoretical 
propositions.

Table- 101(b) Tier 1 – Classification of Origin of Information (Mode of Generation)
Describes how  an information product comes into being — from observation, computation, or cognition.

CODE Category Subclass Examples Definition / Scope

E Empirical Observational, Experimental, Sensor
Created by direct measurement or observation of 
phenomena.

C Computational Simulation, Theoretical, Synthetic
Generated through algorithmic, mathematical, or 
model-based reasoning.

D Derived Analytical, Aggregated, Calibrated
Produced by transforming or combining existing 
datasets.

M Mental*
Idea, Hypothesis, Assumption, Model, 
Interpretation, Insight

Arises from human cognition and intellectual 
activity—mental abstraction, pattern recognition, or 
synthesis of understanding—not directly measurable 
yet epistemically real.

*This fourth class captures “knowledge artifacts” such as an idea conceived, a hypothesis framed, etc.
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6. Dimensions of Scientific Projects 

The SNOWFLAKE framework, as designed, possesses the structural capacity to 
represent an exceptionally rich set of eleven dimensions of a scientific project, 
which is precisely what makes it both novel and powerful. Below is a detailed 
explanation of these eleven dimensions in terms of the SNOWFLAKE schema’s 
semantics ad attribute coverage. 

6.1. Understanding Project Goals 

Every SNOWFLAKE workflow begins with a clear declaration of purpose. The 
WorkFlowTitle, WorkFlowDescription, and DomainKeywords together define 
what the project aims to accomplish, why it matters, and in which scientific or 
applied context it belongs. By requiring these structured fields, SNOWFLAKE 
ensures that each scientific project encodes its central research question or 
engineering goal, allowing others to quickly grasp its intent without ambiguity. The 
language thus transforms project motivation into machine-readable metadata—
something traditional research documentation rarely achieves. 

Table-101(d) Conceptual Information Product (CIP) Classification Table (v1.0)

KIP ID
Information 
Product Type

Definition Typical Origin (Tier 1) Representation (Tier 2)

KIP-01 Idea / Insight
A novel or emergent conceptual realization linking 
phenomena, often intuitive or qualitative.

Mental* Ephemeral → Digital (Textual / Visual)

KIP-02 Hypothesis
A testable propositional statement predicting a 
relationship or mechanism between variables.

Mental* Digital – Symbolic / Textual

KIP-03 Assumption
A foundational premise accepted provisionally to enable 
reasoning or modeling.

Mental* Digital – Textual

KIP-04 Theoretical Model
A structured abstraction representing causal or 
mathematical relationships within a system.

Computational – Theoretical / Menta Digital – Symbolic / Visual

KIP-05
Conceptual 
Framework

An integrated system of related hypotheses, models, or 
principles guiding inquiry within a domain.

Mental* Digital – Textual / Visual

KIP-06 Interpretation
An explanatory mapping of data patterns to meaning or 
theoretical context.

Derived / Mental Digital – Textual / Visual

KIP-07
Prediction / 
Expectation

A quantified or qualitative outcome logically implied by a 
model or hypothesis.

Computational / Mental Digital – Symbolic / Numerical

KIP-08
Design / Plan / 
Protocol

A structured arrangement of actions, parameters, or 
configurations to test a hypothesis or produce data.

Conceptual / Cognitive Digital – Textual / Visual

KIP-09 Algorithm / Method
Formalized sequence of operations to derive results or 
transform data.

Computational – Theoretical Digital – Symbolic / Code

KIP-10
Schema / Ontology 
/ Taxonomy

A structured conceptual model defining entities, 
attributes, and relationships for knowledge organization.

Mental* Digital – Symbolic / Textual

KIP-11
Inference / 
Conclusion

Logical outcome derived from data analysis or reasoning, 
closing a cycle of inquiry.

Derived / Mental Digital – Textual

KIP-12 Principle / Law
A general and reproducible relationship describing 
consistent behavior in nature.

Mental* Digital – Symbolic

KIP-13
Paradigm / Theory 
System

A comprehensive explanatory architecture integrating 
multiple models and laws.

Mental* Digital – Textual / Visual

KIP-14
Heuristic / Rule of 
Thumb

A simplified mental or procedural shortcut derived from 
accumulated experience.

Mental* Ephemeral → Digital (Textual)

KIP-15
Question / Problem 
Statement

A formal articulation of uncertainty or research objective 
driving inquiry.

Mental* Digital – Textual

KIP-20 Other
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6.2. Capturing Significance and Purpose 

Beyond the “what,” SNOWFLAKE records the why—the broader significance and 
motivation behind a project. Through attributes such as WorkflowNarrator, 
CollaborationNetwork, and KnowledgeAreas, each workflow carries a brief 
narrative about its importance, contributors, and context within a larger scientific 
endeavor. This helps situate the workflow’s purpose within the discipline’s 
evolving landscape, showing how it contributes to ongoing inquiry or practical 
outcomes. In this sense, SNOWFLAKE not only documents process but embeds 
the intellectual rationale that drives discovery. 

6.3. Representing the Approach and Methodology 

The heart of any scientific project lies in how it is carried out. SNOWFLAKE 
expresses this through the FunctionalDescription attribute present in every class 
of work element—human, computational, or machine. These fields describe, in the 
language of the domain, what each component does, how it transforms inputs into 
outputs, and what assumptions or methods underlie it. Together with 
ParametricDescriptors and CardinalityConditions, these entries form a 
blueprint of the project’s procedural logic, allowing others to reconstruct or 
simulate the original methodology. 

6.4. Expressing the Mode of Work 

SNOWFLAKE models a project as a directed workflow graph, making explicit the 
mode of work—the flow of tasks, dependencies, and conditions. Links defined by 
LinkType, CardinalityType, and Execution Conditions show how actions 
depend on one another, whether steps occur sequentially or in parallel, and under 
what conditions particular branches execute. This structure captures not just static 
organization but the dynamic behavior of a scientific project: its rhythm, 
synchronization, and flow of information across collaborators and systems. 

6.5. Documenting Human Resource Utilization 

Science is, at its core, a human enterprise. SNOWFLAKE recognizes this by 
explicitly representing the roles and contributions of people within the workflow. 
Each HumanWorkElement includes attributes such as ActorRole, 
ActorLocation, TaskTime, and the total #HumanWorkerInstances involved. 
These attributes map who performs each task, from where, and for how long. The 
result is a formal record of human participation and expertise—a basis for 
understanding the intellectual and labor structure of modern collaborative science. 
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6.6. Capturing Computational Resource Utilization 

Most contemporary scientific projects rely on computational systems. 
SNOWFLAKE captures this through ComputationalWorkElements, which 
specify the ComputeResource, ExecutionTime, Memory, Environment, and 
Tools associated with each computational task. This level of detail enables 
assessment of computational efficiency, cost, and scalability, while allowing 
workflows to be re-executed or ported to different environments. It also supports 
meta-analysis: comparing resource profiles across projects to understand 
computational demands of scientific discovery. 

6.7. Recording Machine and Instrument Utilization 

In addition to computation, many projects depend on laboratory or field 
instruments. MachineWorkElements in SNOWFLAKE include 
CapacityDescription, AllocatedConsumables, Persistence, and Environment, 
creating a comprehensive profile of each instrument or device. This ensures that 
physical context—how sensors, microscopes, or robots contribute—is not lost in 
abstraction. By formalizing machine roles, SNOWFLAKE bridges the gap between 
digital data and physical observation, completing the loop of reproducibility. 

6.8. Describing Data and Information Flow 

Scientific knowledge is carried through data, and SNOWFLAKE models it 
explicitly via InformationProductElements. These define the structure 
(SchmaticDescription), size (Filesize), and transformation characteristics 
(ManipulationTime, MemoryNeed) of each data artifact. Links between elements 
describe how information moves between humans, software, and instruments. This 
converts data lineage—often implicit—into a traceable, queryable network of 
information, enabling provenance tracking and downstream validation. 

6.9. Encoding Collaboration and Roles 

Collaboration lies at the heart of modern science. SNOWFLAKE makes the extent 
and nature of collaboration explicit through attributes like CollaborationNetwork, 
ActorRoleSet, ProtocolOwner, and ProtocolDesigner. These describe 
institutional and interpersonal connections, ownership of methods, and flow of 
responsibility. By doing so, SNOWFLAKE transforms the invisible web of 
teamwork into structured metadata—revealing how ideas, skills, and authority 
move across boundaries in a scientific enterprise. 

6.10. Representing Duration and Temporal Scope 

Time is an essential dimension of any project. SNOWFLAKE captures it at multiple 
scales through TaskTime, ExecutionTime, Persistence, and WorkflowLifetime. 
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Each element carries its own temporal metadata—indicating frequency, repetition, 
or long-term persistence. This allows projects to be understood not as static graphs 
but as evolving processes with defined life cycles, from one-time experiments to 
continuous monitoring networks. Temporal encoding also enables simulation, 
scheduling, and comparative timing analysis across projects. 

6.11. Representing Interdisciplinarity and Knowledge Domains 

Finally, SNOWFLAKE acknowledges that contemporary research rarely fits within 
a single discipline. Attributes such as KnowledgeAreas, DomainKeywords, and 
Tools provide a high-level description of a project’s intellectual and technological 
domains. This allows workflows to be classified, indexed, and discovered across 
scientific boundaries, supporting meta-research and cross-disciplinary analytics. 
By encoding disciplinary diversity as structured metadata, SNOWFLAKE makes 
visible the converging nature of modern science. 

Table-1 shows the representative attribute elements for these dimensions. Together, 
these eleven dimensions turn a SNOWFLAKE workflow into a complete 
conceptual and operational map of a scientific project — from motivation to 
execution, collaboration, and knowledge outcome. It is a language not only for what 
science does, but for how science works. 

 
Table-1 SNOWFLAKE’s Coverage of Science Project’s Dimensions 

   
Aspect of 

Understanding 
Where It Appears 

in SNOWFLAKE Description / Example 

1. Project 
Goals 

WorkFlow
Title, 
WorkFlow
Descriptio
n, 
DomainKe
ywords, 
Knowledg
eAreas 

Each workflow begins with a textual and 
conceptual definition of purpose — 
what the workflow achieves and its 
significance within a discipline. 

2. Scientific 
Significance / 
Purpose 

WorkFlowDescription
, WorkflowNarrator, 
CollaborationNetwork 

Narrative and contextual elements 
articulate why the workflow exists — 
the motivation, domain importance, and 
societal or scientific value. 

3. Approach 
and 
Methodology 

FunctionalDescription 
(in HW, CW, MW, 
IP) 

Every human, computational, machine, 
and information element documents 
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what it does in domain-specific language 
— collectively defining the method. 

4. Mode of 
Work (how 
the work 
proceeds) 

Workflow graph 
structure + 
CardinalityCondition 
+ LinkType 

The directed graph expresses 
sequencing, concurrency, dependencies, 
and conditional execution — capturing 
how the work actually unfolds. 

5. Human 
Resource 
Utilization 

HumanWorkElement.
ActorRole, 
#HumanWorkerInsta
nces, ActorLocation, 
TaskTime 

Specifies the roles, counts, durations, 
and contexts of human participation — 
who does what, where, and for how 
long. 

6. Computing 
Resource 
Utilization and 
Requirements 

ComputationalWorkEl
ement.ComputeResou
rce, ExecutionTime, 
Memory, 
Environment, Tools 

Defines compute nodes, resource 
consumption, execution duration, and 
software stack — precise mapping of 
digital workload. 

7. Machine / 
Instrument 
Resource 
Utilization 

MachineWorkElement
.CapacityDescription, 
AllocatedConsumable
s, Persistence, 
Environment 

Encodes specifications, consumables, 
and usage frequency for lab instruments 
or hardware systems. 

8. Data and 
Information 
Flow 

InformationProductEl
ement.ParametricDes
criptors, 
SchmaticDescription, 
Filesize, MemoryNeed 

Models every data entity, schema, and 
their interactions within the workflow. 

9. 
Collaboration 
and Roles 

ActorRoleSet, 
CollaborationNetwork
, ProtocolOwner, 
ProtocolDesigner 

Expresses who collaborates with whom, 
the ownership of processes, and 
institutional or international 
partnerships. 

10. Duration 
and Temporal 
Scope 

TaskTime, 
ExecutionTime, 
Persistence, 
WorkflowLifeTime 

Provides timing, frequency, and 
persistence — enabling timeline 
reconstruction and scheduling. 

11. Extent of 
Interdisciplina
rity / 
Knowledge 
Domain 

KnowledgeAreas, 
DomainKeywords, 
Tools 

Captures the disciplinary and technical 
diversity of the workflow, defining its 
multi-domain footprint. 
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7. Support for Campus Research Support Engineering 

The SNOWFLAKE framework can transform how campus Research Computing 
and IT Infrastructure Units onboards and maintains interdisciplinary projects on 
shared computing clusters. When a principal investigator seeks assistance in 
migrating a research workflow, engineers must rapidly determine its computational 
footprint, data handling requirements, compliance obligations, and execution 
dependencies. SNOWFLAKE offers a unified, semantically structured metadata 
layer that makes this information immediately discoverable and machine-
interpretable. Its standardized descriptors reveal each project’s hardware, 
software, data, and governance needs, allowing engineers to allocate cluster 
resources, plan data storage, and configure security policies efficiently—without 
repeated manual consultations. The following subsections illustrate typical 
engineering questions and show how SNOWFLAKE attributes provide direct, 
actionable answers. 

7.1. Assessing Computational Environment Requirements 

Before migrating a workflow to a shared cluster, systems engineers must 
understand its computational dependencies and runtime environment. 
SNOWFLAKE records these details through attributes such as ComputeResource, 
Environment, and Tools within the ComputationalWork layer, complemented by 
Infrastructure & Resources in the Workflow layer. Together, these descriptors 
specify CPU/GPU needs, required operating systems, libraries, and execution 
environments. By referencing these structured fields, administrators can evaluate 
compatibility with existing cluster modules, identify software or driver 
dependencies, and pre-allocate suitable nodes—enabling an automated and 
frictionless deployment process. 

7.2. Evaluating Data Scale, Sensitivity, and Storage Constraints 

Understanding the nature and sensitivity of data products is equally essential for 
cluster integration. SNOWFLAKE captures this through SchematicDescription, 
FileSize, and Environment in the InformationProduct layer, along with 
LicenseType and related provenance attributes. These descriptors reveal schema 
complexity, dataset volume, expected data persistence, and protection requirements 
such as encryption or restricted access. IT teams can use them to determine whether 
parallel file systems, object-store tiers, or controlled data partitions are appropriate, 
and to design compliant data-movement and retention strategies that uphold 
confidentiality and regulatory obligations. 
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7.3. Mapping Execution Order and Scheduling Dependencies 

Efficient cluster scheduling requires explicit knowledge of task timing and 
dependency graphs. Within SNOWFLAKE, ExecutionTime attributes across 
HumanWork, ComputationalWork, and MachineWork entities, combined with 
LinkType, CardinalityType, and CardinalityCondition, collectively define a 
directed graph of dependencies and recurrence patterns. These relationships specify 
which tasks may execute concurrently, which must await completion, and how 
frequently they recur. Such structured relationships allow engineers to translate 
scientific workflows directly into schedulable jobs in cluster managers like Slurm, 
PBS, or Kubernetes, ensuring optimal parallelization and resource utilization. 

7.4. Security and Compliance Units 

For cybersecurity, data protection, and research compliance divisions, SNOWFLAKE 
provides transparent traceability of accountability, verification, and data-handling 
practices. Key attributes like SecurityReview, AccountabilityEntity, and 
TaskVerificationMethod document encryption standards, responsibility assignments, and 
audit mechanisms. This allows compliance teams to map data flows against institutional or 
regulatory frameworks such as HIPAA, GDPR, or NIST SP-800-53, ensuring that sensitive 
data never leaves secure domains. In addition, these descriptors support periodic 
compliance reviews and incident response investigations without interrupting active 
research. 

7.5. Defining Accountability and Verification Mechanisms 

In production environments, it is vital to identify ownership and quality-assurance 
responsibility for every workflow component. 
SNOWFLAKE explicitly connects human and organizational roles through 
attributes such as ActorRoleSet, AccountabilityEntity, 
TaskVerificationMethod, and ServiceOwnerAccountability. These ensure that 
each computational or experimental process has a designated maintainer and a 
documented verification mechanism. The result is a clear delineation of support 
boundaries between the research group and the infrastructure team, establishing an 
auditable chain of accountability for change control, debugging, and performance 
validation. 

7.6. Ensuring Compliance, Ethics, and Open-Science Readiness 

Cluster integration must also conform to ethical, regulatory, and institutional 
policies. SNOWFLAKE centralizes this information using attributes such as 
EthicalReview, SecurityReview, EnvironmentalReview, and 
IRBClassification, along with OpenScienceStatement and 
CumulativeFAIRIndex. These collectively inform engineers about required data-
handling safeguards, audit mechanisms, and openness policies before execution. 
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By embedding these compliance and transparency indicators directly within 
workflow metadata, SNOWFLAKE bridges the gap between scientific 
reproducibility and institutional governance, providing a complete metadata 
foundation for securely and transparently deploying research projects on campus 
high-performance computing infrastructure. 

7.7. Supporting Post-Onboarding Maintenance and Lifecycle Management 

Once a research project is operational on a shared cluster, its maintenance becomes 
an ongoing challenge involving software updates, user transitions, resource scaling, 
and compliance re-validation. SNOWFLAKE provides persistent, queryable 
metadata that simplifies this entire lifecycle. 
Attributes such as VersionHistory, TaskVerificationMethod, and 
AccountabilityEntity allow administrators to track component revisions and re-
certify dependencies after upgrades or hardware changes. Persistence, 
Environment, and ExecutionTime descriptors support continuous performance 
monitoring—highlighting when workloads deviate from expected run times or 
when scaling is required. 

Moreover, ServiceOwnerAccountability and ActorRoleSet attributes maintain 
institutional memory of who is responsible for each module, even after project 
personnel change, while SecurityReview and EthicalReview fields ensure that 
access policies and compliance documents remain synchronized with institutional 
standards. In effect, SNOWFLAKE functions as a living operational record—
enabling reproducible reruns, efficient debugging, and accountable maintenance 
across the project’s full lifespan, well beyond its initial onboarding. 

8. Other Institutional Usage of SNOWFLAKE 

The SNOWFLAKE framework benefits a broad range of institutional units beyond 
Research Computing and IT Infrastructure Support, across a university by converting 
complex research activities into structured, interoperable, and intelligible narratives. Each 
unit—academic, administrative, or outreach-oriented—derives distinct value from the 
same metadata fabric, reducing duplication of effort and enabling more coherent 
institutional knowledge flows. Below is a representative set of parties. 

8.1. Institutional Review Board (IRB) and Human-Subjects Oversight 

SNOWFLAKE streamlines ethical oversight by embedding IRB-related information 
directly into the workflow metadata. Attributes such as EthicalReview, 
IRBClassification, and HumanFAIRIndex identify whether human participants are 
involved, the level of review required (exempt, expedited, or full), and whether 
anonymization or consent mechanisms are implemented. When an IRB officer reviews a 
new project submission, these descriptors enable rapid pre-screening of research involving 
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personal data or clinical samples, reducing compliance delays and ensuring early 
identification of projects requiring formal ethical approval. 

8.2. University Libraries and Data Stewardship Offices 

University libraries and research-data offices can use SNOWFLAKE as a metadata 
gateway for digital preservation and open-access publication. Through 
InformationObject, SchematicDescription, LicenseType, and FAIRIndex, the library 
gains a structured overview of datasets, formats, and rights of use. When researchers 
deposit project data or software, librarians can directly ingest SNOWFLAKE metadata into 
institutional repositories or national data commons (e.g., Zenodo, Figshare) with consistent 
FAIR-aligned documentation. This reduces curatorial overhead and ensures long-term 
findability, accessibility, and reusability of research outputs. 

8.3. Communications, Media, and Public Relations Offices 

University communications and media offices often struggle to translate technical projects 
into narratives accessible to the public and funding stakeholders. SNOWFLAKE simplifies 
this task by making contextual information such as ScientificSignificance, 
BroaderImpact, and OpenScienceStatement machine-readable and discoverable. Media 
professionals can identify projects demonstrating innovation, societal relevance, and 
collaboration from these metadata fields and rapidly develop feature stories or press 
releases. The ability to access verified information directly from structured project 
descriptors reduces dependence on time-intensive interviews and ensures scientific 
accuracy in outreach materials. 

8.4. Academic Departments and Curriculum Committees 

Academic departments benefit from SNOWFLAKE’s capacity to connect ongoing 
research projects to instructional objectives and experiential learning opportunities. 
Attributes such as KnowledgeAreas, MethodologyExperimentalDesign, and Tools 
allow faculty to identify workflows suitable for classroom demonstrations, capstone 
projects, or undergraduate research modules. This integration strengthens the research–
teaching continuum, allowing departments to embed real-world data processing and 
reproducibility practices into the curriculum. Students, in turn, gain direct exposure to 
authentic workflows aligned with institutional expertise. 

8.5. Technology Transfer and Intellectual Property (IP) Offices 

SNOWFLAKE assists technology-transfer and intellectual-property units in identifying 
novel and commercializable outputs within the university’s research portfolio. Fields such 
as InnovationVector, ProtocolOwner, and ProtocolType document methodological 
originality, ownership, and reuse rights, respectively. These descriptors allow IP officers 
to assess whether a workflow component constitutes a new algorithm, device, or method 
suitable for patenting or licensing. By automating discovery of potential innovations, 
SNOWFLAKE accelerates technology assessment pipelines and reduces missed 
opportunities for early-stage IP protection. 
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8.6. Institutional Assessment and Strategic Planning Offices 

University leadership and strategic-planning offices rely on accurate metrics to evaluate 
research performance and interdisciplinary engagement. SNOWFLAKE’s attributes—
particularly CollaborationNetwork, WorkflowFAIRIndex, and 
InnovationReadinessLevel—allow aggregation of cross-project indicators such as 
disciplinary diversity, openness scores, and technology maturity. These metrics provide 
empirical evidence for accreditation, benchmarking, and institutional rankings. The 
structured metadata also reveals trends in collaboration networks, guiding investment in 
emerging research domains and interdepartmental programs. 

8.7. Principal Investigators, Postdoctoral Fellows, and Students 

SNOWFLAKE can indeed be most helpful to the core research teams- to better 
organize, communicate, and sustain knowledge continuity across time much more 
effectively than it is possible today- and dramatically increasing team’s scientific 
productivity. Most of today’s team communication is personality driven, often 
information needed to be effective is often inherited from personal communication, 
fragmented notes, often student mentees develop unclear expectations. In contrast 
SNOWFALKE can enable investigator and student alike to enter a project 
environment where their role, purpose, and interconnections are articulated in 
a living digital record. Not only, an individual’s own role, SNOWFLAKE links 
each one role in the broader context of project’s science- where human expertise, 
computational execution, and data provenance are narrated within one coherent 
semantic framework- this can enormously facilitate scientific communication 
among the core team. For example, a new graduate student joining a 
multidisciplinary lab, rather than piecing together instructions from scattered 
emails and hallway conversations, can use SNOWFLAKE dashboard to see 
themselves identified in the ActorRoleSet as “Data Analyst – Validation Stream,” 
with a FunctionalDescription that explains their role, contribution, and other 
entities they need to connect. The CompetencyLevel entry outlines the skills 
expected—say, Python scripting and statistical modeling—while the 
TaskVerificationMethod clarifies how their work will be reviewed and integrated 
by the supervising postdoctoral researcher. The project narrative, stored under 
WorkFlowAbstract and MethodologyExperimentalDesign, contextualizes why 
their role matters within the scientific aim.  Student would no longer need to decode 
informal lab culture to find out what they are supposed to do; mentors could track 
progress transparently and collaborations could scale without losing 
institutional/project memory for evolving projects. By treating the human 
dimension of research as a formal, describable part of the workflow—on par with 
datasets and code—SNOWFLAKE a new level of clarity which is not available in 
any current Workflow language or framework. 
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9. Cost of Maintaining SNOW for Each Project 

The cost of maintaining a SNOW (Scientific Narrative of Workflow) record for each 
project is relatively modest compared to the administrative and communication efficiencies 
it provides. Most of the data elements in the SNOW structure—such as WorkFlowTitle, 
ScientificDescription, and Milestones—already exist in grant proposals, project 
management reports, or publications. Thus, the incremental cost lies primarily in metadata 
curation and periodic updates. In practice, a trained data steward or graduate assistant can 
complete an initial SNOW entry in 2–3 hours using structured templates, with an annual 
update taking less than one hour per project. 

At scale, for institutions hosting hundreds of active projects, this translates to a lightweight 
metadata layer that can be integrated with existing research information systems (e.g., 
Symplectic, Pure, or local grant-tracking portals). The operational expense per project is 
estimated at $50–$75 per year, depending on automation levels, storage architecture, and 
whether the metadata entry is self-declared or centrally validated. 

Moreover, once SNOW records are embedded in the research workflow—from proposal 
submission to publication—the cost curve declines sharply. Automated extraction from 
grant documents, lab notebooks, or repositories can populate up to 70% of the attributes, 
leaving only interpretive fields (e.g., BroaderImpact, OpenScienceStatement) for manual 
input. This hybrid model keeps SNOW maintenance sustainable, minimizes researcher 
burden, and ensures continuous metadata freshness. 

Finally, the return on investment is high: SNOW records not only support IT onboarding 
and media communication but also enhance grant compliance, reproducibility, and 
institutional reporting. The small cost of maintaining SNOW per project is thus best 
viewed as a shared infrastructure investment—comparable to maintaining a DOI registry 
or ORCID system—that pays dividends in visibility, accountability, and interoperability 
across research domains.  
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10. Conclusions 

The project has been supported by funding from the National Science Foundation NSF 
Award#2201558, and NSF Award# 1925678, engineering time contributed by the Division 
of Information Technology, location and engineering time donated by Department of 
Computer Science.  
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