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1. Introduction

Modern scientific projects are increasingly collaborative, data-intensive, and
computationally distributed. A single study may span laboratories, instruments, software
environments, and analytical frameworks across continents. Yet, despite this
interconnected nature of contemporary science, there remains no universal, machine-
readable narration language to describe how scientific work actually happens — how
people, computation, and instruments cooperate to produce reproducible knowledge.

SNOWFLAKE — Scientific Narrative Of WorkFLow for Learning, Analytics and
Knowledge Engineering— is proposed as that language. SNOWFLAKE is a structured
descriptive and executable language for representing, analyzing, sharing, and even
operationalize the complex lifecycle of a scientific project — encompassing human,
computational, machine, and data components. SNOWFLAKE provides a structured,
declarative way to document and encode every element of a scientific workflow:

Human Work Elements (researchers, analysts, field scientists)
Computational Work Elements (software, models, algorithms)

Machine Work Elements (instruments, sensors, hardware)

Information Product Elements (data, models, results, and scientific thoughts)
Linker Elements (that coherently connect them for many purposes).

Each workflow along with its elements described in SNOWFLAKE becomes a scientific
object —uniquely identifiable, interoperable, and semantically interpretable. The language
defines not only the structure of a workflow but also the conditions, resources, roles, and
cdependencies that give it operational meaning. SNOWFLAKE therefore acts as both a
language and a framework — bridging human understanding with computational
execution. Just as a snowflake crystallizes unique yet symmetrical structure, each
SNOWFLAKE document captures a scientific process in all its individuality while
preserving universal form. In short, SNOWFLAKE transforms scientific workflows from
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informal narratives into structured, computable knowledge — enabling science to
describe itself.

2. Related Work

Scientific workflow description languages (SWDL) have evolved over the past
decade to enhance computational reproducibility, data provenance, and cross-
platform interoperability in research automation. Indeed, in last decade, there has
been amazing progress in attempt to capture science workflow. These include
Common Workflow Language (CWL) (Amstutz et al., 2016), Workflow
Description Language (WDL) (Voss ef al., 2017), Nextflow (Di Tommaso ef al.,
2017), Pegasus (Deelman et al., 2015), Galaxy (Afgan et al., 2018), RO-Crate
(Soiland-Reyes et al., 2022), and the recently proposed SWIRL interoperability
framework (Goble et al., 2024).

Each system was developed for a specific scientific purpose and has since evolved
within distinct ecosystem contexts. CWL was designed as a platform-neutral
standard for workflow description and has become central to FAIR-data
infrastructures such as ELIXIR, WorkflowHub, and EOSC-Life (Goble et al., 2020;
Sufi et al., 2023). WDL, developed by the Broad Institute, underpins biomedical
analysis platforms like Terra, BioData Catalyst, and Gen3 Commons, where
standardized genomics workflows are executed at national scale (Broad Institute,
2024). Nextflow has become one of the most widely adopted frameworks for
reproducible, containerized, and scalable data-intensive workflows, driven by the
nf-core community and integrations with AWS Batch, Google Cloud Life Sciences,
and Nextflow Tower (Di Tommaso et al., 2017; Ewels et al., 2020). Pegasus serves
as a mature engine for high-performance and distributed computing, supporting
production deployments at LIGO, NSF XSEDE, and DOE facilities, emphasizing
workflow mapping, provenance, and fault-tolerant execution (Deelman et al., 2015;
Vahi et al., 2020). Galaxy provides a graphical, user-friendly environment for
accessible and reproducible data analysis, widely deployed through public portals
such as UseGalaxy.org, UseGalaxy.eu, and NIH Galaxy, where it supports large
communities of life scientists and educators (Afgan et al., 2018; Jalili et al., 2020).
RO-Crate complements these systems by providing a metadata-packaging
standard that encapsulates digital research artifacts for FAIR compliance and
interoperability across repositories like Zenodo, DataCite, and ARDC (Soiland-
Reyes et al., 2022). Finally, SWIRL represents an emerging interoperability-
oriented representation language designed to unify workflow ecosystems through
a shared intermediate scientific abstraction (Goble et al., 2024).

These languages excel in computational automation, orchestration, reproducibility
however, these exhibit limited semantic expressiveness and epistemic transparency.
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Declarative standards such as CWL and WDL are now cornerstones of reproducible
research but remain primarily machine- and data-focused, offering few constructs
for representing human or institutional roles. Nextflow and Pegasus deliver high
execution fidelity across distributed environments but provide minimal scaffolding
for ethical or Open Science narratives. Galaxy democratizes access through
graphical interfaces but sacrifices formal extensibility. Metadata-focused models
like RO-Crate and SWIRL enhance interoperability but stop short of capturing
human, ethical, or interdisciplinary contexts.

AS evident, most existing SWDL frameworks remain centered on machine-
executable and data-centric representations, leaving gaps in modeling the science
itself- the story of human participation, scientific rationale, ethical context, and
interdisciplinary innovation narratives. —dimensions that the proposed
SNOWFLAKE framework seeks to unify within a single, semantically rich schema.

In contrast to these SWDL frameworks- as we will see SNOWFLAKE extends
beyond machine/computation/digital focused execution description to integrate
computational, human, and semantic dimensions of scientific workflows—
enabling richer representation of intent, responsibility, collaboration, and
reproducibility across the full lifecycle of research.

3. Design of SNOWFLAKE

The SNOWFLAKE schema (Scientific Narrative Of WorkFLow for Learning,
Analytics and Knowledge Engineering) is designed as a meta-representation
framework for describing every dimension of a research project — not just its
computations, but also the human, institutional, informational, and ethical
contexts that make science understandable, communicable, reproducible and
interpretable. A scientific workflow is not just a series of computing- it must be
understood in the context of scientific knowledge it adds to, and the larger
collaborative human knowledge processes involved.

3.1. Formal Definition and Distinction of the SNOWFLAKE

Classically, a workflow has been defined as a “formal specification of a process
that determines the ordered sequence of computational or data manipulation tasks,
their dependencies, and the flow of control and information among them” (Taylor
et al., 2007; van der Aalst et al., 2003; Deelman et al., 2005). Such definitions
emphasize process automation, task coordination, and computational
reproducibility, serving primarily the needs of machine-oriented scientific
workflows such as those implemented in CWL, WDL, Pegasus, or Galaxy (Gil et
al., 2007; Curcin and Ghanem, 2008). Within this paradigm, workflows are treated
as execution graphs—efficient but semantically shallow structures that capture
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how computation occurs while completely omitting human factors, intentions and
important information such as why, by whom, and under what scientific or ethical
rationale it is performed.

In contrast, the SNOWFLAKE Workflow—{formally defined as a structured and
semantically unified schema that integrates human, computational, machine, and
informational processes into a single representation of scientific intent, execution,
and accountability—extends the classical concept beyond automation. It
reconceptualizes workflows not merely as process control models but as
knowledge representation frameworks that capture the epistemic, organizational,
and ethical context of scientific research project.

3.2. Architecture of SNOWFLAKE

Each SNOWFLAKE workflow is instantiated as a graph of interlinked object
classes—WorkFlow (W), HumanWorkElement (H), ComputationalWorkElement
(C), MachineWorkElement (M), InformationProductElement (I), and Link (L)—
providing a multi-actor ontology that models the full lifecycle of a scientific
process. Unlike traditional workflow description languages that focus on execution
provenance and data lineage, SNOWFLAKE introduces attributes for research
hypothesis, theoretical framework, innovation, FAIR indices, and -ethical-
environmental review, thereby achieving both computational reproducibility and
scientific interpretability.

In formal terms, while the classical workflow may be represented as a directed
acyclic graph G = (T,E), where T denotes tasks and E the control or data
dependencies, the SNOWFLAKE workflow extends this to a heterogeneous, typed
graph

Gsnow = (V: E, 2y, EE)

where X, = {W,H,C,M,I} defines vertex classes (human, computational,
machine, informational) and £; = {L} defines link semantics capturing execution,
data-flow, accountability, and ethical relations. This model allows not only
automation and reproducibility but also traceable understanding— enabling cross-
domain reuse, meta-analysis, and Open Science compliance at the institutional
level.

In SNOWFLAKE, a Workflow serves as the top-level narrative container that
encapsulates:

e The scientific purpose (research question, hypothesis, and theoretical
framework),
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e The sequence and interrelation of human, computational, and machine
tasks,

e The information products created, consumed, or transformed, and

e The ethical, environmental, and institutional contexts surrounding the
research.

A Workflow thus provides both procedural structure (the order and dependency
of actions) and epistemic context (the intent, innovation, and accountability) —
bridging the gap between automation schema and scientific narrative.

4. Elements of SNOWFLAKE

4.1. WorkFlow (W) — Project-Level Schema

The WorkFlow (W) element represents the root scientific process—a complete
research activity or experiment, encompassing its intent, methodology, execution,
and evaluation. It functions as the meta-node that unifies all other process
components (human, computational, machine, informational, and linking).
Each workflow instance encapsulates descriptive attributes such as its scientific
abstract, research question, theoretical framework, innovation vector, ethical and
environmental reviews, data stewardship, and FAIR/reproducibility indices.
Formally, W = (ID,D,H, C, M, I, L), where these components define the composite
structure of a self-describing, semantically linked scientific workflow.

4.2. HumanWorkElement (H) — Human Task or Cognitive Role

The HumanWorkElement (H) models human participation and accountability
within a workflow. It captures the intellectual, manual, or supervisory actions
performed by individuals or teams—such as designing protocols, verifying outputs,
annotating data, or approving results. Unlike traditional workflows that abstract
human input as opaque or external, SNOWFLAKE explicitly encodes each actor’s
role, competency level, accountability entity, task time, tools, environment, and
verification method. Formally:

H; = (Role, Action, Context, Time, Competency, Verification)

Where every human instance contributes both process and epistemic traceability to
the workflow.

4.3. ComputationalWorkElement (C) — Algorithmic or Software Process

The ComputationalWorkElement (C) represents any algorithmic, code-based, or
software-driven operation—from data preprocessing to machine learning training
or simulation. It defines the computational function, parameters, algorithms,
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resource usage, and reproducibility metadata (e.g., container versions, runtime
environment, code availability). Attributes such as AlgorithmicDescription,
ComputeResource, ExecutionTime, SoftwareMaturity, and VerificationMethod
ensure both performance accountability and code-level reproducibility.
Formally:

C;= (Function, Parameters, Resources, Environment, Verification, FAIR;)

Extends classical machine-task nodes into self-describing, FAIR-aware
computational entities.

4.4. MachineWorkElement (M) — Physical or Instrumental Operation

The MachineWorkElement (M) describes hardware-dependent or physical system
operations—for instance, a GPU cluster performing inference, a lab instrument
capturing spectra, or an IoT node collecting sensor data. Each instance models the
instrument type, capacity, location, operating environment, calibration,
consumables, responsible entity, and machine-level FAIR index (M-FAIR).
Formally:

M, = (Device, Capacity, Environment, Calibration, Accountability, FAIR),

It ensures that physical instrumentation is not only operationally, but also
semantically integrated into the reproducibility framework.

4.5. InformationProductElement (I) — Data or Knowledge Artifact

The InformationProductElement (I) captures the data entities, models, or
knowledge artifacts produced, consumed, or transformed during workflow
execution. Each instance may represent raw datasets, derived models, simulation
outputs, documents, or analytical results. Attributes such as SchematicDescription,
FileSize, CurationExpertise, ValidationMethod, and I-FAIR Index ensure that data
are findable, accessible, interoperable, and reusable. Formally,

I, = (Content, Schema, Size,Validation, Custodian, FAIR;),

It make every data element a traceable and reusable unit of scientific evidence.

4.6. Link (L) — Relational and Causal Connector

The Link (L) element formalizes the relationships and dependencies among all
other object classes in SNOWFLAKE. Links define not just execution order (as in
classical DAGs) but also semantic, ethical, and accountability relations between
workflow components—such as “produces,” “verifies,” “executes-on,” “resides-
on,” or “supervises.” Each link is typed and labeled (LinkType, LinkLabel) and

2 ¢ 2 ¢
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connects two instances (src,sink), maintaining metadata on cardinality,
validation, and ownership. Formally,

L,, = (src, sink, type, label, verification),

It provides a relational fabric that enables multi-level reasoning, provenance
tracing, and process validation.

4.7. Attributes and Semantics Perimeter

We have designed an extensive +150 attribute schema which works as a semantic
container defining these five elements of SNOWFLAKE. The document presents
the structural design and semantic container — as defined by the attribute
specifications of the SNOWFLAKE schema, defining each entity and its
associated descriptors in a machine-interpretable format. Reader can examine
the list of attributed, their semantics, and the encoding methodology in the
associated Technical Report (Khan, & Thomas & Prithula, 2025 [18]). Each
attribute is assigned a unique identifier, structure, and value constraint to ensure
consistency, interoperability, and semantic traceability across diverse research
environments. It serves as a technical reference for encoders, system designers,
and developers implementing SNOWFLAKE-compliant registries, workflow
capture systems, or data-integration pipelines.

5. Features of SNOWFLAKE

5.1. Traditional Workflow Construction

A flowchart in the SNOWFLAKE system can be dynamically generated using the
entity and link attributes already defined in Tables 3—8. Each node in the chart
corresponds to an entity—Human Work Element (HWE), Computational Work
Element (CWE), Machine Work Element (MWE), or Information Product
Element (IPE)—identified by its InstancelD, Title, and SNOWTypology. The
flow relationships between these nodes are drawn from the Link Elements
(SRClnstancelD, SinkInstancelD, LinkType, and optional LinkLabel), which serve
as directed edges describing execution, data, or dependency paths. Logical
branching, decisions, and synchronization points are governed by the
EpistemicCondition fields on each node (104.3, 105.3, 108.3, 106.4) and by
LinkEpistemicCondition (107.3) on edges; these conditions act as guards that
enable or block transitions—precisely the role of decision diamonds in classical
flowcharts. Additional contextual cues such as ActorRole, ResponsibleEntity, or
FunctionalRole can be used to group nodes into swimlanes, while
NestedCardinality and WorkFlowld organize sub-processes and parent flows.
When rendered graphically, this metadata collectively expresses process order,
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information flow, and epistemic validation states, allowing SNOWFLAKE to
reproduce—and extend—the semantics of a traditional flowchart within a unified
scientific workflow graph.

5.2. Control Flow Representation

SNOWFLAKE can represent control flow, and in fact it can do so in a more
expressive and epistemically rich way than traditional programming control-flow
diagrams.

Control flow describes how execution proceeds — what runs next, under what
condition, and how loops or branches are handled. SNOWFLAKE already encodes
these semantics through its Processing Elements (HWE, CWE, MWE) and Link
Elements (LNK) with Epistemic Conditions.

In this sense:
e Nodes (processes) = execution blocks
e Links (connections) = control edges
e EpistemicCondition / LinkEpistemicCondition = guard or branch
condition
o Cardinality & Persistence = loop, iteration, or concurrency semantics

Thus, a control-flow graph (CFG) is naturally embedded inside a
SNOWFLAKE workflow as its control subgraph.

Table-8 How SNOWFLAKE Encodes Control Flow

Control Flow Concept SNOWFLAKE Representation Example
. . LinkType="Execute-After" between two Task B runs after Task A
Sequential execution .
Processing Elements. completes.
Conditional branch (if/else) M.ultiple. outgoing links. fI‘OII.l a nod.e-, each “If sensor_temp > 50,.act£vate
with a different LinkEpistemicCondition. cooler; else log warning.

A link from a downstream node back to an

Loop / iteration upstream node with LinkType="Loop-Back" and |“Repeat until error_rate < 0.05.”
a condition.
. .. One-to-many or many-to-one links usin “Run preprocessing on 5 data
Parallelism / fork-join - Y . Y N e i . p P & ”
Cardinality or LinkType="Fork"/"Join". partitions concurrently.

A Join node whose inbound links must all be
Synchronization valid before execution (EpistemicCondition =
all preconditions true).

A nested WorkFlow (103.3 NestedCardinality)  [“Invoke SubWorkflow:

“Start training only when all
sensors calibrated.”

Function / subroutine call

with its own internal flow. ModelEvaluation.”
. . A ial link with LinkType="Int ts" “Abort if calibration fil
Exception / interrupt spe.c.la ink with LinkType="Interrupts" or . o.r 1”cal ration file
conditional guard. missing.
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Traditional control flow only expresses temporal or logical sequencing.
SNOWFLAKE introduces epistemic control flow — control based on knowledge
state. That means a process can be enabled not just when a flag or variable is true,
but when an information product (IPE) has been validated, verified, or peer-
reviewed. Such as “Run the publication workflow only after dataset IPE is validated
and peer-review approval is true.” This goes beyond classical CFGs — it merges
knowledge readiness with execution logic, which is essential for scientific or data-
driven workflows.

5.3. Virtual Computing Orchestration

SNOWFLAKE can also be used to represent the mapping of computational
processes onto virtual or physical machine hardware by aligning each
Computational Work Element’s (ComputeResource, ID 105.10) specification with
the Machine Work Element’s (CapacityDescription, ID 108.9) descriptor through
the Executes-on link. The ComputeResource field of a CWE defines the typical
node or hardware configuration required for execution —for example “3x Xeon
28c + P100” —expressing the processor count, core size, and accelerator type the
computation expects. Conversely, each MWE declares its CapacityDescription,
such as “20x Xeon 28c + 160x P100,” summarizing the actual compute resources
available on that machine or virtual instance. During orchestration, the Executes-
on links in mappable state are resolved by matching ComputeResource
requirements against CapacityDescription availability, transitioning through
requested — pending — granted — locked as scheduling proceeds. This pairing
enables SNOWFLAKE to reason quantitatively about placement, verify resource
sufficiency, and translate logical workflows into concrete, capacity-aware
deployments across heterogeneous clusters or virtualized infrastructures.

5.4. Epistemic Conditions for IPE

A powerful and novel feature of the SNOWFLAKE framework is that
conditions are not restricted to process transitions alone but can be attached to
Processing Elements, Information Product Elements (IPEs), and even the Link
Objects that interconnect them. This represents a significant generalization of the
classical Petri net paradigm—where conditions apply primarily to transitions—
into a richer, multi-dimensional epistemic network. In SNOWFLAKE, every
entity and relationship can embody its own activation, validation, or dependency
condition, enabling the system to model not just when processes occur, but when
information becomes epistemically justified and when relationships themselves
become valid. This triadic conditioning mechanism allows SNOWFLAKE to unify
workflow logic, information provenance, and knowledge-state evolution within
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a single, semantically consistent framework—marking a conceptual advance in
representing the dynamics of scientific knowledge creation.

SNOWFLAKE
Element

Table-8 Interpretation of Epistemic Conditions in SNOWFLAKE

Petri Net

Condition

Interpretation in SNOWFLAKE

Example of Application /

Analogue

Type

Defines when a process (human, machine,
or computational) is permitted to execute.

Trigger

"Script (PE) A executes only if

semantic and temporal coherence between
connected elements.

Processing e Operational . . R . raw dataset exists, schema
Transition ire Conditions may include availability of input o
Element (PE) Condition . o matches, and validation flag =
data, tool readiness, user authorization, or true.
time constraints. )
Defi h i ti tifact
. etmes when an information ar lffzc €A | "Derived Genome dataset (IPE)
Information . . be instantiated, updated, or considered e m
Token / Epistemic . . . . G is “valid” only when
Product . epistemically valid. Reflects logical . .
Place Content| Condition .. . . calibration model and
Element (IPE) sufficiency, evidential support, or peer e
S metadata records are verified.
validation.
Defines when a relationship (e.g., "A 'usesDataFrom' link
. . . input-output linkage, dependency, or activates only after both source
Link Object Arcor Flow Relational . p P 5 P . Y 4 .
. (e citation) can be asserted as valid. Ensures | and target IPEs are validated
(LNK) Connection Condition

and temporal overlap is
confirmed.”

5.5. Representation of Human Work and Role

In classical workflow languages such as CWL or WDL, human actions are invisible
to the computational graph; data simply appears as input. RO-Crate and SWIRL
add descriptive power—they can record that Dr. Lee operated the microscope or a
participant contributed blood samples—but these remain annotations detached
from execution. SNOWFLAKE, however, integrates people as active epistemic
agents: the experimenter’s calibration, the analyst’s judgment, and the subject’s

consent are all encoded as workflow attributes and conditions.
A SNOWFLAKE workflow may pause until an authorized scientist verifies an
image, or refuse to proceed  without documented  consent.

This elevates the workflow from a passive automation script to a living
representation of scientific practice, where humans, machines, and ethics co-
operate inside a single computational grammar.

This incorporation of human role in scientific narration is invaluable. From a
technical standpoint, SNOWFLAKE’s treatment of human entities introduces a
representational and operational advance over all prior workflow architectures.
This provides causal completeness — every procedural dependency, including
manual calibration or verification, becomes a first-class element of execution. This
design produces a more realistic computational model of science, since
experimental outcomes are often contingent on human intervention, interpretation,
or ethical compliance. The integration of AccountabilityEntity and
CompetencyLevel attributes enforces verifiable authorship and authorization,
turning provenance into a machine-checkable form of accountability. Similarly,

10
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HumanFAIRIndex and EthicalComplianceCheck extend reproducibility metrics
beyond automation to include cognitive and regulatory traceability, ensuring that
both data and decisions are reproducible. As a result, the SNOWFLAKE engine
can evaluate human-dependent workflow branches conditionally—pausing,
verifying, or rejecting execution based on real-time confirmations. In effect,
SNOWFLAKE fuses human cognition, instrumental control, and algorithmic
execution into a unified formal system, enabling reproducibility-aware, ethics-
aware, and human-aware computation

5.6. Representation of Scientific Instruments

SNOWFLAKE treats a workflow not just as a computational process, but as a
scientific knowledge instrument — one that unifies procedural logic, epistemic
intent, and provenance under a single descriptive model.

Unlike CWL, WDL, Nextflow, or Pegasus, which focus on computational
execution, and unlike RO-Crate or SWIRL, which focus on wmetadata
interoperability, SNOWFLAKE introduces an ontological layer where every
workflow element (task, tool, actor, instrument, environment) carries semantic
attributes such as ScientificSignificance, FunctionalRole, Persistence, and
HumanFAIRIndex. This allows a SNOWFLAKE workflow to explicitly recognize
both digital and physical instruments—for example, identifying an electron
microscope as a calibrated data-producing entity, or a computational model as an
analytic instrument. Among current workflow and provenance frameworks,
most—such as CWL, WDL, Nextflow, Pegasus, and Galaxy—are designed to
describe computational processes, not physical instruments. They can execute
data-analysis steps that use data from an electron microscope or a refrigerator, but
they cannot natively recognize or describe those instruments themselves. Only RO-
Crate and the newer SWIRL interoperability framework allow instruments to be
represented as research objects with metadata, identifiers, and provenance. Thus,
only these two can formally describe classical scientific instruments within a
workflow ecosystem, linking digital computation to the physical apparatus that
generated the data. SNOWFLAKE surpasses existing workflow metadata
frameworks by embedding scientific instruments into the semantic, procedural,
and epistemic fabric of workflows. While RO-Crate and SWIRL can record
instruments as metadata entities for provenance and interoperability,
SNOWFLAKE can instantiate them as active, parameterized participants in the
scientific process—each with role, calibration, accountability, and knowledge
purpose. This transforms a workflow from a record of actions into a living
scientific apparatus—a meta-instrument capable of representing, executing, and
reasoning about real instruments and their contribution to discovery. In essence,
SNOWFLAKE turns the workflow itself into a meta-instrument of science,

11
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capable of describing, executing, and validating knowledge production as a
reproducible and FAIR-aligned process.

5.7. KIP Classification of Innovation and Knowledge Engineering

A KIP (Knowledge Information Product) is an intangible yet identifiable
scientific information artifact representing a conceptual or cognitive construct
generated, refined, or validated through inquiry. It includes ideas, hypotheses,
models, frameworks, and theories — all carrying epistemic value, provenance, and
versioning, just like datasets or workflows.

Each KIP has a persistent identifier, a Tier-1 Origin, a Representation Form,
and a Functional Role within the scientific knowledge cycle.

An innovative feature of SNOWFLAKE is the introduction of a formal language
for representing and tabulating the information artifacts employed in scientific
exploration through a structured KIP (Knowledge Information Product)
typology. To the best of our knowledge, knowledge artifacts—including ideas,
insights, hypotheses, postulates, and models—have not previously been subjected
to systematic classification.

Through its KIP (Knowledge Information Product) typology, SNOWFLAKE
makes it possible to catalogue and analyze ideas, insights, hypotheses, and
models—the cognitive tools that have long driven exploration but have rarely been
formally represented. The KIP framework recognizes these constructs as
authentic, reproducible, and citable information entities, deserving the same
care, traceability, and FAIR stewardship as data and software.
By linking conceptual artifacts to every stage of the scientific workflow,
SNOWFLAKE opens a pathway toward a new discipline of scientific knowledge
engineering, where the evolution of thought itself becomes transparent, analyzable,
and shareable.

Each of these can be recorded as an Information Product Elements (IPE) along with
more traditional items cataloged in earlier efforts. These IPE Instances can be
linked as input/output/derivative to various C/M/H/I workflow element instances.
Below is a SNOWFLAKE three tire IPE typology scheme. For example, a scientist
can provide a plausible interpretation of a trend about reviewing a graph. The
interpretation product can be catalogued as “SNOW.I: M.E.M.KIP-06". Thus,
SNOWFLAKE can be the facilitator for genesis, search, recognition of innovation
products. IT can be foundational towards deeper scientific security.

12
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Table- 101(b) Tier 1 - Classification of Origin of Information (Mode of Generation)

Describes how an information product comes into being — from observation, computation, or cognition.

Interpretation, Insight

CODE Category Subclass Examples Definition / Scope

E Empirical Observational, Experimental, Sensor Created by direct measurement or observation of
phenomena.

C |Computational Simulation, Theoretical, Synthetic Generated through a'lgorlthmlc, mathematical, or
model-based reasoning.

D Derived Analytical, Aggregated, Calibrated Produced by transforming or combining existing
datasets.
Arises from human cognition and intellectual

M Mental* Idea, Hypothesis, Assumption, Model, activity—mental abstraction, pattern recognition, or

synthesis of understanding—not directly measurable

yet epistemically real.

*This fourth class captures “knowledge artifacts” such as an idea conceived, a hypothesis framed, etc.

Table- 101(a) The Three Tire SNOWFLAKE Typology for Information Product

Tire Tier Conceptual Function Examples
. . H iti d inf tial .
T1 |[Tier 1: Origin uman Fogm fve and inferentia Ideas, hypotheses, theories.
generation of new knowledge elements.
. Symbolic or textual expressions of
Tier 2: . .
T2 . conceptual knowledge (statements, Hypothesis text, model equations, conceptual graphs.
Representation . .
equations, diagrams).
T3 Tier 3: Functional |Frameworks guiding or interpreting Hypothesis guiding experiment, theory interpreting

Role

empirical data.

data.

Table-101(d) Tier 3 -Classification of Functional Role (Purpose in the Knowledge Process)
Describes why the information exists and how it functions in inquiry.

Code Role Definition / Scope Illustrative Examples
. Direct empirical or computational
Primary (Raw . . . . . .
P . records representing original Sensor readings, field logs, simulation outputs.
Evidence) .
observations of phenomena.
Analytical, derived, or interpreted
Secondary . . . . .
S outputs created by transforming or Derived datasets, statistical summaries, fitted models.
(Processed Product) . }
analyzing primary sources.
Reference Standardized or benchmark
. . . ) Control datasets, reference spectra, gold-standard
R (Validation / information used to compare, verify, or
. . ) curves.
Calibration) calibrate other data.
Contextual Descriptive or procedural information . . -
. . Experimental design, workflow description,
C (Metadata / that provides context, intent,
. . . provenance records.
Documentation) provenance, or methodological detail.
Intangible intellectual artifacts that
Mental (Cognitive / g . .
. originate from human reasoning, Ideas, hypotheses, conceptual models, theoretical
M Theoretical . L L
. abstraction, or theorization and propositions.
Insight)*

structure the understanding of data.
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Table-101(d) Conceptual Information Product (CIP) Classification Table (v1.0)

Information

Definition

Typical Origin (Tier 1)

Representation (Tier 2)

Product Type

A novel or emergent conceptual realization linking

mathematical relationships within a system.

g . * . .
KIP-01 (Idea / Insight phenomena, often intuitive or qualitative. Mental Ephemeral — Digital (Textual / Visuall
A testabl iti I stat t dicti
KIP-02 [Hypothesis es' e.proposl mnal starementpre l.c 8 Mental* Digital - Symbolic / Textual
relationship or mechanism between variables.
KIP-03 | Assumption A founflatlona] prenluse accepted provisionally to enable Mental* Digital - Textual
reasoning or modeling.
. A structured abstraction representing causal or . . . . .
KIP-04 | Theoretical Model Computational - Theoretical / Menta [Digital - Symbolic / Visual

Conceptual

An integrated system of related hypotheses, models, or

transform data.

X * igital — i
KIP-05 Framework principles guiding inquiry within a domain. Mental Digital - Textual / Visual
KIP-06 |Interpretation An explanatory mapping of data patterns to meaning or |, .04 / Mengal Digital - Textual / Visual
theoretical context.

KIP-07 Predlctlo'n/ A quantified or qualhbatlve outcome logically implied by a Computational / Mental Digital - Symbolic / Numerical
Expectation model or hypothesis.

KIP-08 Design / Plan / A str'uctun?d arrangement ofactlpns, parameters, or Conceptual / Cognitive Digital - Textual / Visual
Protocol configurations to test a hypothesis or produce data.

KIP-09 |Algorithm / Method Formalized sequence of operations to derive results or Computational - Theoretical Digital - Symbolic / Code

Schema / Ontology

A structured conceptual model defining entities,

- * igital - i

KIP-10 / Taxonomy attributes, and relationships for knowledge organization. Mental Digital - Symbolic / Textual

KIP-11 lnferenc.e / Logl.cal outcome c.lenv.ed from data analysis or reasoning, Derived / Mental Digital - Textual
Conclusion closing a cycle of inquiry.

KIP-12 |Principle / Law A general and reproducible relationship describing Mental* Digital - Symbolic

consistent behavior in nature.

KIP-13 Paradigm / Theory (A comprehenslve explanatory architecture integrating Mental* Digital - Textual / Visual
System multiple models and laws.

KIP-14 Heuristic / Rule of |A simplified mental.ur procedural shortcut derived from Mental* Ephemeral — Digital (Textual)
Thumb accumulated experience.

KIP-15 Question / Problem (A forma.l artfculatmn of uncertainty or research objective Mental* Digital - Textual
Statement driving inquiry.

KIP-20 |Other

6. Dimensions of Scientific Projects

The SNOWFLAKE framework, as designed, possesses the structural capacity to
represent an exceptionally rich set of eleven dimensions of a scientific project,
which is precisely what makes it both novel and powerful. Below is a detailed
explanation of these eleven dimensions in terms of the SNOWFLAKE schema’s
semantics ad attribute coverage.

6.1. Understanding Project Goals

Every SNOWFLAKE workflow begins with a clear declaration of purpose. The
WorkFlowTitle, WorkFlowDescription, and DomainKeywords together define
what the project aims to accomplish, why it matters, and in which scientific or
applied context it belongs. By requiring these structured fields, SNOWFLAKE
ensures that each scientific project encodes its central research question or
engineering goal, allowing others to quickly grasp its intent without ambiguity. The
language thus transforms project motivation into machine-readable metadata—
something traditional research documentation rarely achieves.
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6.2. Capturing Significance and Purpose

Beyond the “what,” SNOWFLAKE records the why—the broader significance and
motivation behind a project. Through attributes such as WorkflowNarrator,
CollaborationNetwork, and KnowledgeAreas, each workflow carries a brief
narrative about its importance, contributors, and context within a larger scientific
endeavor. This helps situate the workflow’s purpose within the discipline’s
evolving landscape, showing how it contributes to ongoing inquiry or practical
outcomes. In this sense, SNOWFLAKE not only documents process but embeds
the intellectual rationale that drives discovery.

6.3. Representing the Approach and Methodology

The heart of any scientific project lies in how it is carried out. SNOWFLAKE
expresses this through the FunctionalDescription attribute present in every class
of work element—human, computational, or machine. These fields describe, in the
language of the domain, what each component does, how it transforms inputs into
outputs, and what assumptions or methods underlie it. Together with
ParametricDescriptors and CardinalityConditions, these entries form a
blueprint of the project’s procedural logic, allowing others to reconstruct or
simulate the original methodology.

6.4. Expressing the Mode of Work

SNOWFLAKE models a project as a directed workflow graph, making explicit the
mode of work—the flow of tasks, dependencies, and conditions. Links defined by
LinkType, CardinalityType, and Execution Conditions show how actions
depend on one another, whether steps occur sequentially or in parallel, and under
what conditions particular branches execute. This structure captures not just static
organization but the dynamic behavior of a scientific project: its rhythm,
synchronization, and flow of information across collaborators and systems.

6.5. Documenting Human Resource Utilization

Science is, at its core, a human enterprise. SNOWFLAKE recognizes this by
explicitly representing the roles and contributions of people within the workflow.
Each HumanWorkElement includes attributes such as ActorRole,
ActorLocation, TaskTime, and the total #HumanWorkerInstances involved.
These attributes map who performs each task, from where, and for how long. The
result is a formal record of human participation and expertise—a basis for
understanding the intellectual and labor structure of modern collaborative science.
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6.6. Capturing Computational Resource Utilization

Most contemporary scientific projects rely on computational systems.
SNOWFLAKE captures this through ComputationalWorkElements, which
specify the ComputeResource, ExecutionTime, Memory, Environment, and
Tools associated with each computational task. This level of detail enables
assessment of computational efficiency, cost, and scalability, while allowing
workflows to be re-executed or ported to different environments. It also supports
meta-analysis: comparing resource profiles across projects to understand
computational demands of scientific discovery.

6.7. Recording Machine and Instrument Utilization

In addition to computation, many projects depend on laboratory or field
instruments. MachineWorkElements in SNOWFLAKE include
CapacityDescription, AllocatedConsumables, Persistence, and Environment,
creating a comprehensive profile of each instrument or device. This ensures that
physical context—how sensors, microscopes, or robots contribute—is not lost in
abstraction. By formalizing machine roles, SNOWFLAKE bridges the gap between
digital data and physical observation, completing the loop of reproducibility.

6.8. Describing Data and Information Flow

Scientific knowledge is carried through data, and SNOWFLAKE models it
explicitly via InformationProductElements. These define the structure
(SchmaticDescription), size (Filesize), and transformation characteristics
(ManipulationTime, MemoryNeed) of each data artifact. Links between elements
describe how information moves between humans, software, and instruments. This
converts data lineage—often implicit—into a traceable, queryable network of
information, enabling provenance tracking and downstream validation.

6.9. Encoding Collaboration and Roles

Collaboration lies at the heart of modern science. SNOWFLAKE makes the extent
and nature of collaboration explicit through attributes like CollaborationNetwork,
ActorRoleSet, ProtocolOwner, and ProtocolDesigner. These describe
institutional and interpersonal connections, ownership of methods, and flow of
responsibility. By doing so, SNOWFLAKE transforms the invisible web of
teamwork into structured metadata—revealing how ideas, skills, and authority
move across boundaries in a scientific enterprise.

6.10. Representing Duration and Temporal Scope

Time is an essential dimension of any project. SNOWFLAKE captures it at multiple
scales through TaskTime, ExecutionTime, Persistence, and WorkflowLifetime.
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Each element carries its own temporal metadata—indicating frequency, repetition,
or long-term persistence. This allows projects to be understood not as static graphs
but as evolving processes with defined life cycles, from one-time experiments to
continuous monitoring networks. Temporal encoding also enables simulation,
scheduling, and comparative timing analysis across projects.

6.11. Representing Interdisciplinarity and Knowledge Domains

Finally, SNOWFLAKE acknowledges that contemporary research rarely fits within
a single discipline. Attributes such as KnowledgeAreas, DomainKeywords, and
Tools provide a high-level description of a project’s intellectual and technological
domains. This allows workflows to be classified, indexed, and discovered across
scientific boundaries, supporting meta-research and cross-disciplinary analytics.
By encoding disciplinary diversity as structured metadata, SNOWFLAKE makes
visible the converging nature of modern science.

Table-1 shows the representative attribute elements for these dimensions. Together,
these eleven dimensions turn a SNOWFLAKE workflow into a complete
conceptual and operational map of a scientific project — from motivation to
execution, collaboration, and knowledge outcome. It is a language not only for what
science does, but for how science works.

Table-1 SNOWFLAKE'’s Coverage of Science Project’s Dimensions

Aspect of Where It Appears

Understanding  in SNOWFLAKE Description / Example

WorkFlow
Title,
‘Sg’srcl:l?g Each workflow begins with a textual and
1. Project N P conceptual definition of purpose —
Goals D,omainKe what the workflow achieves and its
ywords significance within a discipline.
Knowledg
eAreas
. g L Narrative and contextual elements
gl S;:Eg;f?; / WV\(;ZIF(E]OOVXV?\?;::;E’:IFOH articulate why the workflow exists —
p fr ose ,CollaborationNetwo,rk the motivation, domain importance, and
p societal or scientific value.
3. Approach FunctionalDescription . .
an dpp (il; HW. CW MVS Every human, computational, machine,
Methodology P) Y ’ and information element documents
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what it does in domain-specific language
— collectively defining the method.

4. Mode of Workflow graph The directed graph expresses
Work (how structure + sequencing, concurrency, dependencies,
the work CardinalityCondition | and conditional execution — capturing
proceeds) + LinkType how the work actually unfolds.
HumanWorkElement Specifies the roles, counts, durations,

5. Human ActorRole, N

and contexts of human participation —
Resource #HumanWorkerInsta

e . who does what, where, and for how

Utilization nces, ActorLocation,

TaskTime

long.

6. Computing

Computational WorkEl
ement.ComputeResou

Defines compute nodes, resource

Resource e consumption, execution duration, and
. . rce, ExecutionTime, . .
Utilization and Memory software stack — precise mapping of
Requirements Environment, Tools digital workload.
7. Machine / Machlr.leWOrkE.Iler.nent o
.CapacityDescription, | Encodes specifications, consumables,
Instrument .
Resource AllocatedConsumable | and usage frequency for lab instruments
Utilizati s, Persistence, or hardware systems.
1lization Environment
InformationProductEl
8. Data and ement.ParametricDes .
. . Models every data entity, schema, and
Information criptors, . . s
. L their interactions within the workflow.
Flow SchmaticDescription,
Filesize, MemoryNeed
9 ActorRoleSet, Expresses who collaborates with whom,
) . CollaborationNetwork | the ownership of processes, and
Collaboration o . .
, ProtocolOwner, institutional or international
and Roles . .
ProtocolDesigner partnerships.
10. Duration TaSle_me’ ) Provides timing, frequency, and
ExecutionTime, . . . .
and Temporal : persistence — enabling timeline
Scope Persistence, reconstruction and scheduling
WorkflowLifeTime )
11. Extent of
Interdisciplina | KnowledgeAreas, Captures the disciplinary and technical
rity / DomainKeywords, diversity of the workflow, defining its
Knowledge Tools multi-domain footprint.
Domain
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7. Support for Campus Research Support Engineering

The SNOWFLAKE framework can transform how campus Research Computing
and IT Infrastructure Units onboards and maintains interdisciplinary projects on
shared computing clusters. When a principal investigator seeks assistance in
migrating a research workflow, engineers must rapidly determine its computational
footprint, data handling requirements, compliance obligations, and execution
dependencies. SNOWFLAKE offers a unified, semantically structured metadata
layer that makes this information immediately discoverable and machine-
interpretable. Its standardized descriptors reveal each project’s hardware,
software, data, and governance needs, allowing engineers to allocate cluster
resources, plan data storage, and configure security policies efficiently—without
repeated manual consultations. The following subsections illustrate typical
engineering questions and show how SNOWFLAKE attributes provide direct,
actionable answers.

7.1. Assessing Computational Environment Requirements

Before migrating a workflow to a shared cluster, systems engineers must
understand its computational dependencies and runtime environment.
SNOWFLAKE records these details through attributes such as ComputeResource,
Environment, and Tools within the ComputationalWork layer, complemented by
Infrastructure & Resources in the Workflow layer. Together, these descriptors
specify CPU/GPU needs, required operating systems, libraries, and execution
environments. By referencing these structured fields, administrators can evaluate
compatibility with existing cluster modules, identify software or driver
dependencies, and pre-allocate suitable nodes—enabling an automated and
frictionless deployment process.

7.2. Evaluating Data Scale, Sensitivity, and Storage Constraints

Understanding the nature and sensitivity of data products is equally essential for
cluster integration. SNOWFLAKE captures this through SchematicDescription,
FileSize, and Environment in the /InformationProduct layer, along with
LicenseType and related provenance attributes. These descriptors reveal schema
complexity, dataset volume, expected data persistence, and protection requirements
such as encryption or restricted access. IT teams can use them to determine whether
parallel file systems, object-store tiers, or controlled data partitions are appropriate,
and to design compliant data-movement and retention strategies that uphold
confidentiality and regulatory obligations.
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7.3. Mapping Execution Order and Scheduling Dependencies

Efficient cluster scheduling requires explicit knowledge of task timing and
dependency graphs. Within SNOWFLAKE, ExecutionTime attributes across
HumanWork, ComputationalWork, and MachineWork entities, combined with
LinkType, CardinalityType, and CardinalityCondition, collectively define a
directed graph of dependencies and recurrence patterns. These relationships specify
which tasks may execute concurrently, which must await completion, and how
frequently they recur. Such structured relationships allow engineers to translate
scientific workflows directly into schedulable jobs in cluster managers like Slurm,
PBS, or Kubernetes, ensuring optimal parallelization and resource utilization.

7.4. Security and Compliance Units

For cybersecurity, data protection, and research compliance divisions, SNOWFLAKE
provides transparent traceability of accountability, verification, and data-handling
practices. Key attributes like SecurityReview, AccountabilityEntity, and
TaskVerificationMethod document encryption standards, responsibility assignments, and
audit mechanisms. This allows compliance teams to map data flows against institutional or
regulatory frameworks such as HIPAA, GDPR, or NIST SP-800-53, ensuring that sensitive
data never leaves secure domains. In addition, these descriptors support periodic
compliance reviews and incident response investigations without interrupting active
research.

7.5. Defining Accountability and Verification Mechanisms
In production environments, it is vital to identify ownership and quality-assurance

responsibility for every workflow component.
SNOWFLAKE explicitly connects human and organizational roles through
attributes such as ActorRoleSet, AccountabilityEntity,

TaskVerificationMethod, and ServiceOwnerAccountability. These ensure that
each computational or experimental process has a designated maintainer and a
documented verification mechanism. The result is a clear delineation of support
boundaries between the research group and the infrastructure team, establishing an
auditable chain of accountability for change control, debugging, and performance
validation.

7.6. Ensuring Compliance, Ethics, and Open-Science Readiness

Cluster integration must also conform to ethical, regulatory, and institutional
policies. SNOWFLAKE centralizes this information using attributes such as
EthicalReview, SecurityReview, EnvironmentalReview, and
IRBClassification, along with OpenScienceStatement and
CumulativeFAIRIndex. These collectively inform engineers about required data-
handling safeguards, audit mechanisms, and openness policies before execution.
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By embedding these compliance and transparency indicators directly within
workflow metadata, SNOWFLAKE bridges the gap between scientific
reproducibility and institutional governance, providing a complete metadata
foundation for securely and transparently deploying research projects on campus
high-performance computing infrastructure.

7.7. Supporting Post-Onboarding Maintenance and Lifecycle Management

Once a research project is operational on a shared cluster, its maintenance becomes
an ongoing challenge involving software updates, user transitions, resource scaling,
and compliance re-validation. SNOWFLAKE provides persistent, queryable
metadata that simplifies this entire lifecycle.
Attributes such as  VersionHistory, TaskVerificationMethod, and
AccountabilityEntity allow administrators to track component revisions and re-
certify dependencies after upgrades or hardware changes. Persistence,
Environment, and ExecutionTime descriptors support continuous performance
monitoring—highlighting when workloads deviate from expected run times or
when scaling is required.

Moreover, ServiceOwnerAccountability and ActorRoleSet attributes maintain
institutional memory of who is responsible for each module, even after project
personnel change, while SecurityReview and EthicalReview fields ensure that
access policies and compliance documents remain synchronized with institutional
standards. In effect, SNOWFLAKE functions as a living operational record—
enabling reproducible reruns, efficient debugging, and accountable maintenance
across the project’s full lifespan, well beyond its initial onboarding.

8. Other Institutional Usage of SNOWFLAKE

The SNOWFLAKE framework benefits a broad range of institutional units beyond
Research Computing and IT Infrastructure Support, across a university by converting
complex research activities into structured, interoperable, and intelligible narratives. Each
unit—academic, administrative, or outreach-oriented—derives distinct value from the
same metadata fabric, reducing duplication of effort and enabling more coherent
institutional knowledge flows. Below is a representative set of parties.

8.1. Institutional Review Board (IRB) and Human-Subjects Oversight

SNOWFLAKE streamlines ethical oversight by embedding IRB-related information
directly into the workflow metadata. Attributes such as EthicalReview,
IRBClassification, and HumanFAIRIndex identify whether human participants are
involved, the level of review required (exempt, expedited, or full), and whether
anonymization or consent mechanisms are implemented. When an IRB officer reviews a
new project submission, these descriptors enable rapid pre-screening of research involving
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personal data or clinical samples, reducing compliance delays and ensuring early
identification of projects requiring formal ethical approval.

8.2. University Libraries and Data Stewardship Offices

University libraries and research-data offices can use SNOWFLAKE as a metadata
gateway for digital preservation and open-access publication. Through
InformationObject, SchematicDescription, LicenseType, and FAIRIndex, the library
gains a structured overview of datasets, formats, and rights of use. When researchers
deposit project data or software, librarians can directly ingest SNOWFLAKE metadata into
institutional repositories or national data commons (e.g., Zenodo, Figshare) with consistent
FAIR-aligned documentation. This reduces curatorial overhead and ensures long-term
findability, accessibility, and reusability of research outputs.

8.3. Communications, Media, and Public Relations Offices

University communications and media offices often struggle to translate technical projects
into narratives accessible to the public and funding stakeholders. SNOWFLAKE simplifies
this task by making contextual information such as ScientificSignificance,
BroaderImpact, and OpenScienceStatement machine-readable and discoverable. Media
professionals can identify projects demonstrating innovation, societal relevance, and
collaboration from these metadata fields and rapidly develop feature stories or press
releases. The ability to access verified information directly from structured project
descriptors reduces dependence on time-intensive interviews and ensures scientific
accuracy in outreach materials.

8.4. Academic Departments and Curriculum Committees

Academic departments benefit from SNOWFLAKE’s capacity to connect ongoing
research projects to instructional objectives and experiential learning opportunities.
Attributes such as KnowledgeAreas, MethodologyExperimentalDesign, and Tools
allow faculty to identify workflows suitable for classroom demonstrations, capstone
projects, or undergraduate research modules. This integration strengthens the research—
teaching continuum, allowing departments to embed real-world data processing and
reproducibility practices into the curriculum. Students, in turn, gain direct exposure to
authentic workflows aligned with institutional expertise.

8.5. Technology Transfer and Intellectual Property (IP) Offices

SNOWFLAKE assists technology-transfer and intellectual-property units in identifying
novel and commercializable outputs within the university’s research portfolio. Fields such
as InnovationVector, ProtocolOwner, and ProtocolType document methodological
originality, ownership, and reuse rights, respectively. These descriptors allow IP officers
to assess whether a workflow component constitutes a new algorithm, device, or method
suitable for patenting or licensing. By automating discovery of potential innovations,
SNOWFLAKE accelerates technology assessment pipelines and reduces missed
opportunities for early-stage IP protection.
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8.6. Institutional Assessment and Strategic Planning Offices

University leadership and strategic-planning offices rely on accurate metrics to evaluate
research performance and interdisciplinary engagement. SNOWFLAKE’s attributes—
particularly CollaborationNetwork, WorkflowFAIRIndex, and
InnovationReadinessLevel—allow aggregation of cross-project indicators such as
disciplinary diversity, openness scores, and technology maturity. These metrics provide
empirical evidence for accreditation, benchmarking, and institutional rankings. The
structured metadata also reveals trends in collaboration networks, guiding investment in
emerging research domains and interdepartmental programs.

8.7. Principal Investigators, Postdoctoral Fellows, and Students

SNOWFLAKE can indeed be most helpful to the core research teams- to better
organize, communicate, and sustain knowledge continuity across time much more
effectively than it is possible today- and dramatically increasing team’s scientific
productivity. Most of today’s team communication is personality driven, often
information needed to be effective is often inherited from personal communication,
fragmented notes, often student mentees develop unclear expectations. In contrast
SNOWFALKE can enable investigator and student alike to enter a project
environment where their role, purpose, and interconnections are articulated in
a living digital record. Not only, an individual’s own role, SNOWFLAKE links
each one role in the broader context of project’s science- where human expertise,
computational execution, and data provenance are narrated within one coherent
semantic framework- this can enormously facilitate scientific communication
among the core team. For example, a new graduate student joining a
multidisciplinary lab, rather than piecing together instructions from scattered
emails and hallway conversations, can use SNOWFLAKE dashboard to see
themselves identified in the ActorRoleSet as “Data Analyst — Validation Stream,”
with a FunctionalDescription that explains their role, contribution, and other
entities they need to connect. The CompetencyLevel entry outlines the skills
expected—say, Python scripting and statistical modeling—while the
TaskVerificationMethod clarifies how their work will be reviewed and integrated
by the supervising postdoctoral researcher. The project narrative, stored under
WorkFlowAbstract and MethodologyExperimentalDesign, contextualizes why
their role matters within the scientific aim. Student would no longer need to decode
informal lab culture to find out what they are supposed to do; mentors could track
progress transparently and collaborations could scale without losing
institutional/project memory for evolving projects. By treating the human
dimension of research as a formal, describable part of the workflow—on par with
datasets and code—SNOWFLAKE a new level of clarity which is not available in
any current Workflow language or framework.
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9. Cost of Maintaining SNOW for Each Project

The cost of maintaining a SNOW (Scientific Narrative of Workflow) record for each
project is relatively modest compared to the administrative and communication efficiencies
it provides. Most of the data elements in the SNOW structure—such as WorkFlowTitle,
ScientificDescription, and Milestones—already exist in grant proposals, project
management reports, or publications. Thus, the incremental cost lies primarily in metadata
curation and periodic updates. In practice, a trained data steward or graduate assistant can
complete an initial SNOW entry in 2-3 hours using structured templates, with an annual
update taking less than one hour per project.

At scale, for institutions hosting hundreds of active projects, this translates to a lightweight
metadata layer that can be integrated with existing research information systems (e.g.,
Symplectic, Pure, or local grant-tracking portals). The operational expense per project is
estimated at $50-$75 per year, depending on automation levels, storage architecture, and
whether the metadata entry is self-declared or centrally validated.

Moreover, once SNOW records are embedded in the research workflow—from proposal
submission to publication—the cost curve declines sharply. Automated extraction from
grant documents, lab notebooks, or repositories can populate up to 70% of the attributes,
leaving only interpretive fields (e.g., BroaderIlmpact, OpenScienceStatement) for manual
input. This hybrid model keeps SNOW maintenance sustainable, minimizes researcher
burden, and ensures continuous metadata freshness.

Finally, the return on investment is high: SNOW records not only support IT onboarding
and media communication but also enhance grant compliance, reproducibility, and
institutional reporting. The small cost of maintaining SNOW per project is thus best
viewed as a shared infrastructure investment—comparable to maintaining a DOI registry
or ORCID system—that pays dividends in visibility, accountability, and interoperability
across research domains.
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10. Conclusions

The project has been supported by funding from the National Science Foundation NSF
Award#2201558, and NSF Award# 1925678, engineering time contributed by the Division
of Information Technology, location and engineering time donated by Department of
Computer Science.
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